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Preface
The following are my solutions to the exercises in Emily Riehl’s textbook
Category Theory in Context.
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Chapter 1

Categories, Functors,
Natural Transformations

1.1 Abstract and concrete categories

Exercise 1.1.i

(i)

We find that
𝑔 = 𝑔1𝑥 = 𝑔𝑓 ℎ = 1𝑦ℎ = ℎ .

It follows from this equality 𝑔 = ℎ that the morphism 𝑔 is not only a left-sided
inverse to the morphism 𝑓 , but also a right-sided inverse, because ℎ is a right-
sided inverse to 𝑓 . Therefore, 𝑔 is a two-sided inverse to 𝑓 . The existence of
this two-sided inverse means precisely that 𝑓 is an isomorphism.

(ii)

Suppose that a morphism 𝑓 ∶ 𝑥 → 𝑦 in a category 𝖢 admits two inverses 𝑔
and ℎ. This means, more explicitly, that both 𝑔 and ℎ are two-sided inverse
to 𝑓 . This entails that 𝑔𝑓 = 1𝑥 and also 𝑓 ℎ = 1𝑦 . According to the previous
part of this exercise, we thus have 𝑔 = ℎ.

Exercise 1.1.ii

We denote the suspected category by𝖦. It has the same objects as the original
category 𝖢, but its morphisms are only the isomorphisms from 𝖢.
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Chapter 1 Categories, Functors, Natural Transformations

The objects of 𝖦 are also objects of 𝖢 by definition of 𝖦, and for every two
objects 𝑥 and 𝑦 of 𝖦, the set 𝖦(𝑥, 𝑦) of isomorphisms from 𝑥 to 𝑦 (in 𝖢) is a
subset of 𝖢(𝑥, 𝑦).

For every object 𝑥 of 𝖢 let 1𝑥 be the identity morphism of 𝑥 in the original
category 𝖢. This identity morphism is an isomorphism in 𝖢 (it is its own
inverse) and therefore contained in𝖦. This shows that all identity morphisms
from 𝖢 are contained in 𝖦.

Let 𝑓 and 𝑔 be two morphisms in 𝖦 that are composable in 𝖢, i.e., such
that the codomain of 𝑓 equals the domain of 𝑔; suppose more specifically
that 𝑓 ∶ 𝑥 → 𝑦 and 𝑔 ∶ 𝑦 → 𝑧. Both 𝑓 and 𝑔 are isomorphisms in 𝖢, and
the composite 𝑔𝑓 in 𝖢 is therefore again an isomorphism in 𝖢: its inverse is
given by the composite 𝑓 −1𝑔−1. Therefore, 𝑔𝑓 is again contained in 𝖦.

We have shown that 𝖦 contains all identity morphisms of 𝖢 and that 𝖦 is
closed under composition of morphisms. This shows that 𝖦 is a subcategory
of 𝖢.

Let 𝑓 ∶ 𝑥 → 𝑦 be a morphism in 𝖦. This means that 𝑓 is in isomorphism
in 𝖢, which in turn means that there exists a (unique) morphism 𝑓 −1∶ 𝑦 → 𝑥
with both 𝑓 𝑓 −1 = 1𝑦 and 𝑓 −1𝑓 = 1𝑥 in 𝖢. But these equalities also tell
us that 𝑓 −1 is an isomorphism with inverse 𝑓 (so that (𝑓 −1)−1 = 𝑓 ), which
entails that 𝑓 −1 is also a morphism in 𝖦. The morphisms 𝑓 and 𝑓 −1 are also
mutually inverse in 𝖦, because 𝖦 is a subcategory of 𝖢. Therefore, 𝑓 is an
isomorphism in 𝖦.

We have shown that everymorphism in𝖦 is an isomorphism, not only in𝖢
but already in 𝖦, which shows that 𝖦 is a groupoid.

Let now 𝖦′ be another subcategory of 𝖢 that is also a groupoid. This
means that there exists for every morphism 𝑓 ∶ 𝑥 → 𝑦 in 𝖦′ another mor-
phism 𝑓 −1∶ 𝑦 → 𝑥 in 𝖦′ with 𝑓 𝑓 −1 = 1𝑦 and 𝑓 −1𝑓 = 1𝑥 in 𝖦′. In these two
equalities, both composition and identity morphisms take place in 𝖦′. But
since 𝖦′ is a subcategory of 𝖦, these equations entail that 𝑓 and 𝑓 −1 are also
mutually inverse in 𝖢. In other words, 𝑓 is an isomorphism in 𝖢. This in turn
means that 𝑓 is contained in 𝖦.

We have shown that every morphism in 𝖦′ is also contained in 𝖦. This
shows that 𝖦 is indeed the maximal groupoid in 𝖢.
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1.1 Abstract and concrete categories

Exercise 1.1.iii
(i)

We denote the object of 𝑐/𝖢 as pairs (𝑓 , 𝑥), where 𝑥 is an object of 𝖢 and 𝑓 is
a morphism from 𝑐 to 𝑥 in 𝖢.

We first need to explain how the composition of morphisms in 𝑐/𝖢 is sup-
posed to work. Given two such morphisms

𝜑 ∶ (𝑓 , 𝑥) ⟶ (𝑔, 𝑦) and 𝜓 ∶ (𝑔, 𝑦) ⟶ (ℎ, 𝑧)
in 𝑐/𝖢, we have the following commutative diagram:

𝑐

𝑥 𝑦 𝑧

𝑓 𝑔 ℎ
𝜑 𝜓

By leaving the node 𝑦 out of this diagram, we arrive at the following commu-
tative diagram:

𝑐

𝑥 𝑧

𝑓 ℎ
𝜓𝜑

The commutativity of this diagram tells us that the composite 𝜓𝜑 (taken in 𝖢)
is a morphism from (𝑓 , 𝑥) to (ℎ, 𝑧) in 𝑐/𝖢. This observation allows us to define
the composite of 𝜑 and 𝜓 in 𝑐/𝖢 as their composite in 𝖢.

The associativity of composition of morphisms in 𝑐/𝖢 follows from the
associativity of composition of morphisms in 𝖢.

We have for every object (𝑓 , 𝑥) in 𝑐/𝖢 the following commutative diagram:

𝑐

𝑥 𝑥

𝑓 𝑓

1𝑥

The commutativity of this diagram tells us that 1𝑥 is a morphism from (𝑓 , 𝑥)
to (𝑓 , 𝑥) in 𝑐/𝖢. We have for every morphism 𝜑 ∶ (𝑓 , 𝑥) → (𝑔, 𝑦) in 𝑐/𝖢 the
equalities

𝜑1𝑥 = 𝜑 , and 1𝑦𝜑 = 𝜑
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Chapter 1 Categories, Functors, Natural Transformations

in 𝖢, and therefore also in 𝑐/𝖢.
We have thus shown that the identity morphism of 𝑥 in 𝖢 serves as the

identity morphism of (𝑓 , 𝑥) in 𝑐/𝖢.1

(ii)

This part of the exercise works completely dual to the first part: just reverse
all the arrows. (That is, 𝖢/𝑐 ≅ (𝑐/𝖢op)op.)

1.2 Duality

Exercise 1.2.i
Let 𝑐 be an object in a category 𝖢.

The exercise tasks uswith proving that two categories are isomorphic, even
though the book has yet to introduce the notion of an isomorphism of cate-
gories. (We haven’t even introduced functors yet.) We will construct in the
following a contravariant functor from 𝖢/𝑐 to 𝑐/𝖢op that is bijective on ob-
jects and on morphisms.

The objects of the slice category 𝖢/𝑐 are the pairs (𝑥, 𝑓 ) consisting of an-
other object 𝑥 of 𝖢 and a morphism 𝑓 ∶ 𝑥 → 𝑐 in 𝖢. Similarly, the objects of
the slice category 𝑐/𝖢op are the pairs (𝑥, 𝑓 ′) consisting of another object 𝑥
of𝖢op and a morphism 𝑓 ′∶ 𝑐 → 𝑥 in𝖢op. The two categories𝖢 and𝖢op have
the same objects, and we know that morphisms in 𝖢op correspond bijectively
to morphisms in 𝖢 via the mapping (𝑓 ∶ 𝑥 → 𝑦) ↦ (𝑓 op∶ 𝑦 → 𝑥). It follows
that this bijection restricts to a bijection between the objects of 𝖢/𝑐 on the
one hand and the objects of 𝑐/𝖢op on the other hand. More explicitly, this
bijection is given by

(𝑥, 𝑓 ∶ 𝑥 → 𝑐) ⟼ (𝑥, 𝑓 op∶ 𝑐 → 𝑥) .

Let (𝑥, 𝑓 ) and (𝑦 , 𝑔) be two objects of𝖢/𝑐. A morphism from (𝑥, 𝑓 ) to (𝑦 , 𝑔)
in 𝖢/𝑐 is a morphism 𝜑 ∶ 𝑥 → 𝑦 in the category 𝖢 for which the following

1We should actually ensure that Hom-spaces in 𝑐/𝖢 are pairwise disjoint, but we don’t
care about this for now – we could just apply the usual construction of replacing ev-
ery morphism 𝜑 ∶ (𝑓 , 𝑥) → (𝑔, 𝑦) by its triple (𝜑, (𝑓 , 𝑥), (𝑔, 𝑦)) to ensure this technical
requirement.
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1.2 Duality

diagram commutes:

𝑥 𝑦

𝑐

𝜑

𝑓 𝑔

Similarly, a morphism from (𝑦 , 𝑔op) to (𝑥, 𝑓 op) in the category 𝑐/𝖢op is a
morphism 𝜑′∶ 𝑦 → 𝑥 in 𝖢op for which the following diagram commutes:

𝑐

𝑦 𝑥

𝑔op 𝑓 op

𝜑′

We have therefore for every morphism 𝜑 ∶ 𝑥 → 𝑦 in 𝖢 the sequence of equiv-
alences

𝜑 is a morphism from (𝑥, 𝑓 ) to (𝑦 , 𝑔) in 𝖢/𝑐
⟺ 𝑔𝜑 = 𝑓
⟺ (𝑔𝜑)op = 𝑓 op
⟺ 𝜑op𝑔op = 𝑓 op
⟺ 𝜑op is a morphism from (𝑦 , 𝑔op) to (𝑥, 𝑓 op) in 𝑐/𝖢op .

These equivalences tell us that the bijection between morphisms of 𝖢 and
morphisms of 𝖢op given by 𝜑 ↦ 𝜑op restricts for every two objects (𝑥, 𝑓 )
and (𝑦 , 𝑔) of𝖢/𝑐 to a bijection betweenmorphisms from (𝑥, 𝑓 ) to (𝑦 , 𝑔) in𝖢/𝑐
on the one hand andmorphisms from (𝑦 , 𝑔op) to (𝑥, 𝑓 op) in 𝑐/𝖢op on the other
hand:

𝑥 𝑦

𝑐

𝜑

𝑓 𝑔 ⟷
𝑥 𝑦

𝑐

𝜑op

𝑓 op 𝑔op

We have thus constructed a bijection between the objects of the two cat-
egories 𝖢/𝑐 and 𝑐/𝖢op, given by (𝑥, 𝑓 ) ↦ (𝑥, 𝑓 op), as well as for every two
objects (𝑥, 𝑓 ) and (𝑦 , 𝑔) of 𝖢/𝑐 a bijection between the morphisms from (𝑥, 𝑓 )
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Chapter 1 Categories, Functors, Natural Transformations

to (𝑦 , 𝑔) in 𝖢/𝑐 and the morphisms from (𝑦 , 𝑔op) to (𝑥, 𝑓 op) in 𝑐/𝖢op, given
by 𝜑 ↦ 𝜑op. We denote these mappings by 𝐷 (for “duality”).

It remains to check the functoriality of 𝐷. We have for every object (𝑥, 𝑓 )
of 𝖢/𝑐 the sequence of equalities

𝐷(1(𝑥,𝑓 )) = 1op(𝑥,𝑓 ) = 1op𝑥,𝖢 = 1𝑥,𝖢op = 1(𝑥,𝑓 op) = 1𝐷((𝑥,𝑓 )) ,
which shows that 𝐷 preserves identities. We also have for any two compos-
able morphisms 𝜑 ∶ (𝑥, 𝑓 ) → (𝑦, 𝑔) and 𝜓 ∶ (𝑦, 𝑔) → (𝑧, ℎ) in 𝖢/𝑐 the se-
quence of equalities

𝐷(𝜓𝜑) = (𝜓𝜑)op = 𝜑op𝜓 op = 𝐷(𝜑)𝐷(𝜓) ,
which shows that 𝐷 contravariantly preserves composition.

Regarding the second part of this exercise: by using the contravariant iso-
morphism 𝐷, one could actually define 𝖢/𝑐 as (𝑐/𝖢op)op. This would then
allow us to deduce part (ii) of Exercise 1.1.iii from the previous part (i).

Exercise 1.2.ii
(i)

Suppose first that 𝑓 is a split epimorphism. This means that there exists a
morphism 𝑔 ∶ 𝑦 → 𝑥 with 𝑓 𝑔 = 1𝑦 . It follows for every object 𝑐 of 𝖢 for the
two induced functions

𝑓∗∶ 𝖢(𝑐, 𝑥) ⟶ 𝖢(𝑐, 𝑦) and 𝑔∗∶ 𝖢(𝑐, 𝑦) ⟶ 𝖢(𝑐, 𝑥)
that

𝑓∗(𝑔∗(𝜑)) = 𝑓∗(𝑔𝜑) = 𝑓 𝑔𝜑 = 1𝑦𝜑 = 𝜑
for every element 𝜑 of the set 𝖢(𝑐, 𝑦). This shows that the function 𝑔∗ is right
inverse to the function 𝑓∗. The existence of such a right-inverse entails that 𝑓∗
is surjective.

Suppose now that the induced function 𝑓∗∶ 𝖢(𝑐, 𝑥) → 𝖢(𝑐, 𝑦) is surjective
for every object 𝑐 of 𝖢. By choosing 𝑐 as 𝑦 , we can see that the map

𝑓∗∶ 𝖢(𝑦, 𝑥) ⟶ 𝖢(𝑦, 𝑦) , 𝑔 ⟼ 𝑓𝑔
is surjective. This surjectivity entails that there exists an element 𝑔 of 𝖢(𝑦, 𝑥)
– that is, a morphism 𝑔 ∶ 𝑦 → 𝑥 in 𝖢 – such that 𝑓 𝑔 = 1𝑦 . The existence of
this morphism 𝑔 tells us that 𝑓 is split epimorphism.
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1.2 Duality

(ii)

We have the following sequence of equivalences:

𝑓 ∶ 𝑥 → 𝑦 is a split monomorphism in 𝖢
⟺ there exists a morphism 𝑔 ∶ 𝑦 → 𝑥 in 𝖢 with 𝑔𝑓 = 1𝑥,𝖢
⟺ there exists a morphism 𝑔 ∶ 𝑦 → 𝑥 in 𝖢 with (𝑔𝑓 )op = 1op𝑥,𝖢
⟺ there exists a morphism 𝑔 ∶ 𝑦 → 𝑥 in 𝖢 with 𝑓 op𝑔op = 1𝑥,𝖢op

⟺ there exists a morphism 𝑔′∶ 𝑥 → 𝑦 in 𝖢 with 𝑓 op𝑔′ = 1𝑥,𝖢op

⟺ 𝑓 op∶ 𝑦 → 𝑥 is a split epimorphism in 𝖢op

⟺ (𝑓 op)∗∶ 𝖢op(𝑐, 𝑦) → 𝖢op(𝑐, 𝑥) is surjective for every object 𝑐 of 𝖢op

⟺ (𝑓 op)∗∶ 𝖢op(𝑐, 𝑦) → 𝖢op(𝑐, 𝑥) is surjective for every object 𝑐 of 𝖢 .
We observe that the diagram

𝖢(𝑦, 𝑐) 𝖢(𝑥, 𝑐)

𝖢op(𝑐, 𝑦) 𝖢op(𝑐, 𝑥)

𝑓 ∗

(−)op (−)op

(𝑓 op)∗

commutes because

𝑓 ∗(ℎ)op = (ℎ𝑓 )op = 𝑓 opℎop = (𝑓 op)∗(ℎop)
for every element ℎ of 𝖢(𝑦, 𝑐). Both vertical arrows in this diagram are bijec-
tions. Consequently, the upper horizontal arrow is surjective if and only if
the lower horizontal arrow is surjective.

Exercise 1.2.iii
We prove (i) and (ii) by providing two proofs for each statement.

Statement (i), first proof

Let ℎ1, ℎ2∶ 𝑐 → 𝑥 be two morphisms with 𝑔𝑓 ℎ1 = 𝑔𝑓 ℎ2. Then 𝑓 ℎ1 = 𝑓 ℎ2
because 𝑔 is a monomorphism, and then furthermore ℎ1 = ℎ2 because 𝑓 is
a monomorphism. This shows that the composite 𝑔𝑓 is again a monomor-
phism.
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Chapter 1 Categories, Functors, Natural Transformations

Statement (i), second proof

Let 𝑐 be an arbitrary object of 𝖢. By assumption, both maps

𝑓∗∶ 𝖢(𝑐, 𝑥) ⟶ 𝖢(𝑐, 𝑦) , 𝑔∗∶ 𝖢(𝑐, 𝑦) ⟶ 𝖢(𝑐, 𝑧)

are injective. It follows that their composite 𝑔∗𝑓∗ is again injective. But we
have the identity 𝑔∗𝑓∗ = (𝑔𝑓 )∗. We have thus found that the map

(𝑔𝑓 )∗∶ 𝖢(𝑐, 𝑥) ⟶ 𝖢(𝑐, 𝑧)

is injective for every object 𝑐 of 𝖢. This tells us that the composite 𝑔𝑓 is again
a monomorphism.

Statement (ii), first proof

Let ℎ1, ℎ2∶ 𝑐 → 𝑥 be twomorphismswith 𝑓 ℎ1 = 𝑓 ℎ2. Then also 𝑔𝑓 ℎ1 = 𝑔𝑓 ℎ2,
and thus ℎ1 = ℎ2 because 𝑔𝑓 is a monomorphism. This shows that 𝑓 is a
monomorphism.

Statement (ii), second proof

Let 𝑐 be an arbitrary object of 𝖢. By assumption, the induced map

(𝑔𝑓 )∗∶ 𝖢(𝑐, 𝑥) ⟶ 𝖢(𝑐, 𝑧)

is injective. But this induced function equals the composite 𝑔∗𝑓∗, whence this
composite is injective. It follows (from naive set theory) that the function 𝑓∗
is injective. We have thus shown that the map

𝑓∗∶ 𝖢(𝑐, 𝑥) ⟶ 𝖢(𝑐, 𝑦)

is injective for every object 𝑐 of 𝖢. This tells us that the morphism 𝑓 is a
monomorphism.
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1.2 Duality

Concluding (i’)

We first observe for every morphism 𝑓 ∶ 𝑥 → 𝑦 in 𝖢 the following sequence
of equivalences:

𝑓 ∶ 𝑥 → 𝑦 is an epimorphism in 𝖢
⟺ for all 𝑔1, 𝑔2∶ 𝑦 → 𝑐 in 𝖢, 𝑔1𝑓 = 𝑔2𝑓 implies 𝑔1 = 𝑔2
⟺ for all 𝑔1, 𝑔2∶ 𝑦 → 𝑐 in 𝖢, (𝑔1𝑓 )op = (𝑔2𝑓 )op implies 𝑔op1 = 𝑔op2
⟺ for all 𝑔1, 𝑔2∶ 𝑦 → 𝑐 in 𝖢, 𝑓 op𝑔op1 = 𝑓 op𝑔op2 implies 𝑔op1 = 𝑔op2
⟺ for all 𝑔′1, 𝑔′2∶ 𝑐 → 𝑦 in 𝖢op, 𝑓 op𝑔′1 = 𝑓 op𝑔′2 implies 𝑔′1 = 𝑔′2
⟺ 𝑓 op∶ 𝑦 → 𝑥 is a monomorphism in 𝖢op .

Thanks to this observation and part (i) of the lemma (i.e, Lemma 1.2.11),
we can now observe the following sequence of equivalences:

𝑓 ∶ 𝑥 → 𝑦 and 𝑔 ∶ 𝑦 → 𝑧 are epimorphism in 𝖢
⟺ 𝑓 op∶ 𝑦 → 𝑥 and 𝑔op∶ 𝑧 → 𝑦 are monomorphisms in 𝖢op

⟹ 𝑓 op𝑔op∶ 𝑧 → 𝑥 is a monomorphism in 𝖢op

⟺ (𝑔𝑓 )op∶ 𝑧 → 𝑥 is a monomorphism in 𝖢op

⟺ 𝑔𝑓 ∶ 𝑥 → 𝑧 is an epimorphism in 𝖢op

This proves statement (i’).

Concluding (ii’)

By using part (ii) of the lemma and once again the above observation, we get
the following sequence of equivalences:

𝑔𝑓 ∶ 𝑥 → 𝑧 is an epimorphism in 𝖢
⟺ (𝑔𝑓 )op∶ 𝑧 → 𝑥 is a monomorphism in 𝖢op

⟺ 𝑓 op𝑔op∶ 𝑧 → 𝑥 is a monomorphism in 𝖢op

⟺ 𝑔op∶ 𝑧 → 𝑦 is a monomorphism in 𝖢op

⟺ 𝑔∶ 𝑦 → 𝑧 is an epimorphism in 𝖢 .

This proves statement (ii’).
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Chapter 1 Categories, Functors, Natural Transformations

Monomorphisms form a subcategory

A class of morphism 𝑀 in 𝖢 forms a subcategory of 𝖢 if and only if the fol-
lowing two conditions are satisfied:

1. 𝑀 is closed under composition.

2. For every morphism 𝑓 ∶ 𝑥 → 𝑦 belonging to 𝑀 , both 1𝑥 and 1𝑦 again
belong to 𝑀 .

In the case that𝑀 is supposed to define a full subcategory of 𝖢 (i.e., a subcat-
egory that contains all objects of 𝖢), the second condition can be simplified
as follows:

2’. 1𝑥 belongs to 𝑀 for every object 𝑥 of 𝖢.

We have already seen in Lemma 1.2.11 (and proven in the previous parts of
this exercise) that the classes of monomorphisms and epimorphisms are both
closed under composition. Identity morphisms are isomorphisms, therefore
both split monomorphisms and also split epimorphisms, and therefore both
monomorphisms and epimorphisms. Consequently, both the class of mono-
morphisms and the class of epimorphisms define full subcategories of 𝖢.

Exercise 1.2.iv
Every homomorphism of fields is injective, and therefore a monomorphism
in 𝖥𝗂𝖾𝗅𝖽.

Exercise 1.2.v
Let 𝑖 denote the inclusion map from ℤ to ℚ, which is a homomorphism of
rings. The map 𝑖 is injective, and therefore a monomorphism.

Let 𝑅 be another ring and let 𝑓 be a homomorphism of rings from ℚ to 𝑅.
We have for every nonzero integer 𝑛 the equalities

𝑓 (𝑛) ⋅ 𝑓 (1𝑛) = 𝑓 (𝑛 ⋅ 1𝑛) = 𝑓 (1) = 1 .
This shows that 𝑓 (1/𝑛) is multiplicatively inverse to 𝑓 (𝑛) in 𝑅. In other
words, 𝑓 (𝑛) is invertible in 𝑅 and 𝑓 (1/𝑛) = 𝑓 (𝑛)−1. It follows for every frac-
tion 𝑝/𝑞 in ℚ that

𝑓 (𝑝𝑞 ) = 𝑓 (𝑝 ⋅ 1𝑞) = 𝑓 (𝑝) ⋅ 𝑓 (1𝑞) = 𝑓 (𝑝) ⋅ 𝑓 (𝑞)−1 = (𝑓 ∘ 𝑖)(𝑝) ⋅ (𝑓 ∘ 𝑖)(𝑞)−1 .
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1.2 Duality

This shows that the homomorphism 𝑓 is uniquely determined by its compos-
ite 𝑓 ∘ 𝑖. As this holds for every morphism 𝑓 with domain ℚ, we have shown
that 𝑖 is an epimorphism.

We have thus shown that 𝑖 is both a monomorphism and an epimorphism.
But it is not an isomorphism, as it is not bijective (1/2 does not lie in the
image of 𝑖, whence 𝑖 is not surjective).

We canmore generally consider a commutative ring 𝑅, a multiplicative sub-
set 𝑆 of 𝑅, and the canonical homomorphism 𝑗 from 𝑅 to its localization 𝑆−1𝑅,
given by 𝑟 ↦ 𝑟/1. Then the following hold:

• 𝑗 is always an epimorphism.

• 𝑗 is a monomorphism if and only if it is injective, which is the case if and
only if 𝑆 does not contain any zero divisor.

• 𝑗 is an isomorphism if and only if every element of 𝑆 is already invertible
in 𝑅 to begin with.

Exercise 1.2.vi
First part, first proof

Let 𝑓 ∶ 𝑥 → 𝑦 be a morphism in a category 𝖢 that is both a monomorphism
and a split epimorphism. The second assumption tells us that there exists a
morphism 𝑔 ∶ 𝑦 → 𝑥 with 𝑓 𝑔 = 1𝑦 . It follows that 𝑓 𝑔𝑓 = 1𝑦𝑓 = 𝑓 = 𝑓 1𝑥 ,
and therefore 𝑔𝑓 = 1𝑥 because 𝑓 is a monomorphism. This shows that 𝑔
is already a two-sided inverse to 𝑓 . The existence of this two-sided inverse
means that 𝑓 is an isomorphism.

First part, second proof

As before, let 𝑓 ∶ 𝑥 → 𝑦 be a morphism in a category 𝖢 that is both a mono-
morphism and a split epimorphism. The induced map 𝑓∗∶ 𝖢(𝑐, 𝑥) → 𝖢(𝑐, 𝑦)
is injective for every object 𝑐 of𝖢 because 𝑓 is a monomorphism, and it is also
surjective because 𝑓 is a split epimorphism. This shows that 𝑓∗ is a bijective
for every object 𝑐 of 𝖢, which in turn shows that 𝑓 is an isomorphism.

Second part

Suppose now that 𝑓 is a morphism in a category 𝖢 that is both a split mono-
morphism and an epimorphism. This means that 𝑓 op is both a split epimor-

11
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phism and a monomorphism in 𝖢op. As seen above, 𝑓 op is therefore an iso-
morphism in 𝖢op. This is in turn equivalent to 𝑓 being an isomorphism in 𝖢.

Exercise 1.2.vii

Let 𝐴 be a subset of a poset (𝖯, ≤).

Definition of the supremum

An element 𝑠 of 𝖯 is a supremum of 𝐴 if and only if for every element 𝑥 of 𝖯
the following condition holds: 𝑥 ≥ 𝑠 if and only if 𝑥 ≥ 𝑎 for every 𝑎 ∈ 𝐴.
In categorical terms, this condition means that for every object 𝑥 of 𝖯, there
exists a morphism 𝑠 → 𝑥 if and only if there exists a morphism 𝑎 → 𝑥 for
every object 𝑎 contained in 𝐴.

Definition of the infimum

Dually, an object 𝑖 of 𝖯 is an infimum of𝐴 if and only if for every object 𝑥 of 𝖯,
there exists a morphism 𝑥 → 𝑖 if and only if there exists a morphism 𝑥 → 𝑎
for every object 𝑎 of 𝐴. That is, 𝑖 is an infimum of 𝐴 in 𝖯 if and only if it is a
supremum of 𝐴 in 𝖯op.

Uniqueness of the supremum

Let now 𝑠1 and 𝑠2 be two suprema of 𝐴. There exists a morphism 𝑠1 → 𝑠1,
namely the identity morphism. As 𝑠1 is a supremum of 𝐴, there hence exists
for every object 𝑎 contained in 𝐴 a morphism 𝑎 → 𝑠1. As 𝑠2 is a supremum
of 𝐴, it follows that there exists a morphism 𝑓 ∶ 𝑠1 → 𝑠2. By switching the
roles of 𝑠1 and 𝑠2 we also find that there exists a morphism 𝑔 ∶ 𝑠2 → 𝑠1.

The composite 𝑓 𝑔 is a morphism 𝑠2 → 𝑠2, and has therefore the same
domain and codomain as the identity morphism 1𝑠2 . For any two objects 𝑥
and 𝑦 in 𝖯 there exists at most one morphism from 𝑥 to 𝑦 , whence it follows
that 𝑓 𝑔 = 1𝑠2 . We find in the same way that also 𝑔𝑓 = 1𝑠1 .

This shows that 𝑓 is an isomorphism with inverse 𝑔. But any two isomor-
phic objects of 𝖯 are already equal (because the relation ≤ on 𝖯 is antisym-
metric). We hence find that 𝑠1 = 𝑠2.

12



1.3 Functoriality

Uniqueness of the infimum

Suppose that 𝑖1 and 𝑖2 are two infima of 𝐴. This means that 𝑖1 and 𝑖2 are
suprema of 𝐴 in 𝖯op, whence 𝑖1 = 𝑖2.

1.3 Functoriality

Exercise 1.3.i
Let 𝐺 and 𝐻 be two groups. A functor Φ from 𝖡𝐺 to 𝖡𝐻 consists of a set-
theoretic function {∗} → {∗} together with a set-theoretic function

𝜑 ∶ 𝐺 ⟶ 𝐻

such that
𝜑(1∗) = 1∗ and 𝜑(𝑔1𝑔2) = 𝜑(𝑔1)𝜑(𝑔2)

for all 𝑔1, 𝑔2 ∈ 𝐺. The second condition means precisely that 𝜑 is a homomor-
phism of groups, and this then entails the first condition.

We see that a functor from 𝖡𝐺 to 𝖡𝐻 is “the same” as a homomorphism of
groups from 𝐺 to 𝐻 .

Exercise 1.3.ii
Let 𝑃 and 𝑄 be two partially ordered sets, and let 𝖯 and 𝖰 be the correspond-
ing categories. A functor 𝐹 from 𝖯 to 𝖰 consists of a function

𝑓 ∶ 𝑃 ⟶ 𝑄

as well as for every two elements 𝑝1 and 𝑝2 of 𝑃 a function

𝐹𝑝1,𝑝2 ∶ 𝖯(𝑝1, 𝑝2) ⟶ 𝖰(𝑓 (𝑝1), 𝑓 (𝑝2))

such that

𝐹𝑝,𝑝(1𝑝) = 1𝑓 (𝑝) and 𝐹𝑝1,𝑝3(𝜓𝜑) = 𝐹𝑝2,𝑝3(𝜓 ) ⋅ 𝐹𝑝1,𝑝2(𝜑) (1.1)

for every object 𝑝 in 𝖯 and all morphisms 𝜑 ∶ 𝑝1 → 𝑝2 and 𝜓 ∶ 𝑝2 → 𝑝3 in 𝖯.
We make two observations regarding the above data and conditions.

13
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1. The sets 𝖰(𝑞1, 𝑞2) for 𝑞1, 𝑞2 ∈ 𝑄 are either empty or singletons. The
equalities (1.1) are therefore automatically satisfied.

2. The existence of a function 𝐹𝑝1,𝑝2 ∶ 𝖯(𝑝1, 𝑝2) → 𝖰(𝑓 (𝑝1), 𝑓 (𝑝2)) is equiv-
alent to the implication

𝖯(𝑝1, 𝑝2) ≠ ∅ ⟹ 𝖰(𝑓 (𝑝1), 𝑓 (𝑝2)) ≠ ∅ ,
which is furthermore equivalent to the implication

𝑝1 ≤ 𝑝2 ⟹ 𝑓(𝑝1) ≤ 𝑓 (𝑝2) .
The existence of the functions 𝐹𝑝1,𝑝2 for all 𝑝1, 𝑝2 ∈ 𝑃 is therefore equiv-
alent to 𝑓 being isotone (i.e., weakly increasing).

We find altogether that a functor 𝐹 from 𝖯 to 𝖰 is “the same” as an isotone
function 𝑓 from 𝑃 to 𝑄.

Exercise 1.3.iii
We consider the partially ordered set 𝑃 given by four elements 𝑎1, 𝑏1, 𝑎2, 𝑏2
with non-trivial relations 𝑎1 ≤ 𝑏1 and 𝑎2 ≤ 𝑏2, and the partially ordered set 𝑄
with elements 1, 2, 3 and 1 ≤ 2 ≤ 3. The categories 𝖯 and 𝖰 corresponding
to 𝑃 and 𝑄 look respectively as follows:

𝑃 ∶ 𝑎1 𝑏1 𝑎2 𝑏2

𝑄 ∶
2

1 3
We have a functor 𝐹 ∶ 𝖯 → 𝖰 that maps the morphism 𝑎1 → 𝑏1 to the

morphism 1 → 2, and themorphism 𝑎2 → 𝑏2 to themorphism 2 → 3. The two
morphisms 1 → 2 and 2 → 3 lie in the image of 𝐹 , but their composite 1 → 3
does not. The image of 𝐹 is therefore not a subcategory of 𝖰 .

Exercise 1.3.iv
Let 𝖢 be a category and let 𝑐 be an object of 𝖢.
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1.3 Functoriality

The covariant functor 𝖢(𝑐, −)
We need to show that 𝖢(𝑐, −) is compatible with identities and composition
of morphisms.

• Let 𝑥 be an arbitrary object of 𝖢. The induced map

(1𝑥)∗∶ 𝖢(𝑐, 𝑥) ⟶ 𝖢(𝑐, 𝑥)
is the identity map of the set 𝖢(𝑐, 𝑥) since

(1𝑥)∗(ℎ) = 1𝑥 ⋅ ℎ = ℎ = 1𝖢(𝑐,𝑥)(ℎ)
for every ℎ ∈ 𝖢(𝑐, 𝑥).

• Let 𝑓 ∶ 𝑥 → 𝑦 and 𝑔 ∶ 𝑦 → 𝑧 be two composable morphisms in 𝖢. We
have the sequence of equalities

(𝑔𝑓 )∗(ℎ) = (𝑔𝑓 )ℎ = 𝑔(𝑓 ℎ) = 𝑔∗(𝑓 ℎ) = 𝑔∗(𝑓∗(ℎ))
for every ℎ ∈ 𝖢(𝑐, 𝑥), and therefore the equality (𝑔𝑓 )∗ = 𝑔∗𝑓∗.

We have altogether shown that 𝖢(𝑐, −) is a covariant functor from 𝖢 to 𝖲𝖾𝗍.

The contravariant functor 𝖢(−, 𝑐)
We proceed dually to the contravariant case.

• Let 𝑥 be an arbitrary object of 𝖢. The induced map

(1𝑥)∗∶ 𝖢(𝑥, 𝑐) ⟶ 𝖢(𝑥, 𝑐)
is the identity map of the set 𝖢(𝑥, 𝑐) since

(1𝑥)∗(ℎ) = ℎ ⋅ 1𝑥 = ℎ = 1𝖢(𝑥,𝑐)(ℎ)
for every ℎ ∈ 𝖢(𝑥, 𝑐).

• Let 𝑓 ∶ 𝑥 → 𝑦 and 𝑔 ∶ 𝑦 → 𝑧 be two composable morphisms in 𝖢. We
have the sequence of equalities

(𝑔𝑓 )∗(ℎ) = ℎ(𝑔𝑓 ) = (ℎ𝑔)𝑓 = 𝑓 ∗(ℎ𝑔) = 𝑓 ∗(𝑔∗(ℎ))
for every ℎ ∈ 𝖢(𝑧, 𝑐), and therefore the equality (𝑔𝑓 )∗ = 𝑓 ∗𝑔∗.

We have altogether shown that 𝖢(−, 𝑐) is a contravariant functor from 𝖢
to 𝖲𝖾𝗍.
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Exercise 1.3.v

A functor from 𝖢 to 𝖣 is “the same” as a functor from 𝖢op to 𝖣op. Conse-
quently, a functor from 𝖢op to 𝖣 is “the same” as a functor from 𝖢opop = 𝖢
to 𝖣op.

Exercise 1.3.vi

Definition of the composition of morphisms in 𝐹 ↓ 𝐺
Let

(ℎ, 𝑘)∶ (𝑑, 𝑒, 𝑓 ) ⟶ (𝑑′, 𝑒′, 𝑓 ′) , (ℎ′, 𝑘′)∶ (𝑑′, 𝑒′, 𝑓 ′) ⟶ (𝑑″, 𝑒″, 𝑓 ″)

be twomorphisms in 𝐹 ↓ 𝐺 that ought to be composable. We have by assump-
tions on the pairs (ℎ, 𝑘) and (ℎ′, 𝑘′) the following two commutative square
diagrams:

𝐹(𝑑) 𝐺(𝑒)

𝐹(𝑑′) 𝐺(𝑒′)

𝑓

𝐹(ℎ) 𝐺(𝑘)
𝑓 ′

𝐹(𝑑′) 𝐺(𝑒′)

𝐹 (𝑑″) 𝐺(𝑒″)

𝑓 ′

𝐹(ℎ′) 𝐺(𝑘′)
𝑓 ″

By combining these two diagrams, with the first diagram above the second,
we arrive at the following commutative diagram:

𝐹(𝑑) 𝐺(𝑒)

𝐹 (𝑑′) 𝐺(𝑒′)

𝐹 (𝑑″) 𝐺(𝑒″)

𝑓

𝐹(ℎ) 𝐺(𝑘)
𝑓 ′

𝐹(ℎ′) 𝐺(𝑘′)
𝑓 ″
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1.3 Functoriality

By leaving out the center row of this diagram we arrive at the following com-
mutative square diagram:

𝐹(𝑑) 𝐺(𝑒)

𝐹 (𝑑″) 𝐺(𝑒″)

𝑓

𝐹(ℎ′)𝐹 (ℎ) 𝐺(𝑘′)𝐺(𝑘)
𝑓 ″

This diagram can equivalently be rewritten as follows:

𝐹(𝑑) 𝐺(𝑒)

𝐹(𝑑″) 𝐺(𝑒″)

𝑓

𝐹(ℎ′ℎ) 𝐺(𝑘′𝑘)
𝑓 ″

The commutativity of this square diagram tells us that the pair (ℎ′ℎ, 𝑘′𝑘) is
a morphism from (𝑑, 𝑒, 𝑓 ) to (𝑑″, 𝑒″, 𝑓 ″) in 𝐹 ↓ 𝐺. We define the compos-
ite (ℎ′, 𝑘′) ⋅ (ℎ, 𝑘) as (ℎ′ℎ, 𝑘′𝑘). In other words, the composition of morphisms
in 𝐹 ↓ 𝐺 is componentwise.

The associativity of the composition of morphisms in the proposed cate-
gory 𝐹 ↓ 𝐺 follows componentwise from the associativity of the compositions
of morphisms in 𝖣 and 𝖤.

It remains to prove the existence of identity morphisms in 𝐹 ↓ 𝐺.
We have for every object (𝑑, 𝑒, 𝑓 ) in 𝐹 ↓ 𝐺 the following commutative

square diagram:

𝐹(𝑑) 𝐺(𝑒)

𝐹(𝑑) 𝐺(𝑒)

𝑓

1𝐹(𝑑) 1𝐺(𝑒)
𝑓

This diagram can equivalently be rewritten as follows:

𝐹(𝑑) 𝐺(𝑒)

𝐹(𝑑) 𝐺(𝑒)

𝑓

𝐹(1𝑑 ) 𝐺(1𝑒)
𝑓
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The commutativity of this diagram tells us that the pair (1𝑑 , 1𝑒) is a morphism
from (𝑑, 𝑒, 𝑓 ) to (𝑑, 𝑒, 𝑓 ) in 𝐹 ↓ 𝐺. We have for every morphism

(ℎ, 𝑘)∶ (𝑑, 𝑒, 𝑓 ) ⟶ (𝑑′, 𝑒′, 𝑓 ′)
in 𝐹 ↓ 𝐺 the two sequences of equalities

(1𝑑′ , 1𝑒′) ⋅ (ℎ, 𝑘) = (1𝑑′ ⋅ ℎ, 1𝑒′ ⋅ 𝑘) = (ℎ, 𝑘)
and

(ℎ, 𝑘) ⋅ (1𝑑 , 1𝑒) = (ℎ ⋅ 1𝑑 , 𝑘 ⋅ 1𝑒) = (ℎ, 𝑘) .
This tells us that for every object (𝑑, 𝑒, 𝑓 ) of 𝐹 ↓ 𝐺 the endomorphism (1𝑑 , 1𝑒)
of (𝑑, 𝑒, 𝑓 ) serves as the identity morphism of (𝑑, 𝑒, 𝑓 ).

We have altogether constructed a category 𝐹 ↓ 𝐺.

The functors dom and codom
We define the “domain functor” dom∶ 𝐹 ↓ 𝐺 → 𝖣 as dom((𝑑, 𝑒, 𝑓 )) = 𝑑
on objects and as dom((ℎ, 𝑘)) = ℎ on morphisms. Similarly, we define the
“codomain functor” codom∶ 𝐹 ↓ 𝐺 → 𝖤 as codom((𝑑, 𝑒, 𝑓 )) = 𝑒 on objects
and as codom((ℎ, 𝑘)) = 𝑘 on morphisms. The actions of dom and codom can
more graphically be depicted as follows:

𝑑

𝑑′
ℎ ⟿

𝐹(𝑑) 𝐺(𝑒)

𝐹(𝑑′) 𝐺(𝑒′)

𝑓

𝐹(ℎ) 𝐺(𝑘)
𝑓 ′

⟿
𝑒

𝑒′
𝑘

The assignments dom and codom are indeed functors because identities
in 𝐹 ↓ 𝐺 and composition of morphisms in 𝐹 ↓ 𝐺 work componentwise.

Exercise 1.3.vii
Let𝖢 be a category and let 𝑐 be an arbitrary object of𝖢. Let 𝟙 be the singleton
category consisting of a single object ∗ and only the morphism 1∗. Let 𝐹 be
the constant functor from 𝟙 to𝖢 corresponding to the object 𝑐, i.e., the functor

𝐹 ∶ 𝟙 ⟶ 𝖢 , ∗ ⟼ 𝑐 , 1∗ ⟼ 1𝑐 .
The comma category 1𝖢 ↓ 𝐹 looks as follows:
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• The objects of 1𝖢 ↓ 𝐹 are triples (𝑥, ∗, 𝑓 ) consisting of an object 𝑥 of 𝖢 and
a morphism 𝑓 ∶ 1𝖢(𝑥) → 𝐹(∗), i.e., a morphism 𝑓 ∶ 𝑥 → 𝑐.

• A morphism from (𝑥, ∗, 𝑓 ) to (𝑦 , ∗, 𝑔) is a pair (𝜑, 1∗) consisting of a mor-
phism 𝜑 ∶ 𝑥 → 𝑦 in 𝖢 such that the following diagram commutes:

1𝖢(𝑥) 𝐹(∗)

1𝖢(𝑦) 𝐹(∗)

𝑓

1𝖢(𝜑) 𝐹(1∗)

𝑔

This diagram can be simplified as follows:

𝑥 𝑐

𝑦 𝑐

𝑓

𝜑 1𝑐

𝑔

A further simplification yields the following diagram:

𝑥 𝑦

𝑐

𝜑

𝑓 𝑔

• The composite of two morphisms

(𝜑, 1∗)∶ (𝑥, ∗, 𝑓 ) ⟶ (𝑦, ∗, 𝑔) , (𝜓 , 1∗)∶ (𝑦, ∗, 𝑔) ⟶ (𝑧, ∗, ℎ)
is given by

(𝜓 , 1∗) ⋅ (𝜑, 1∗) = (𝜓𝜑, 1∗1∗) = (𝜓𝜑, 1∗) .
We find that the comma category 1𝖢 ↓ 𝐹 is isomorphic to the slice cate-
gory 𝖢/𝑐 via

(𝑥, ∗, 𝑓 ) ⟼ (𝑥, 𝑓 ) , (𝜑, 1∗) ⟼ 𝜑 .
We can show similarly that the slice category 𝑐/𝖢 is isomorphic to the comma
category 𝐹 ↓ 1𝖢.
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The domain functor (1𝖢 ↓ 𝐹) → 𝖢 corresponds to the functor 𝖢/𝑐 → 𝖢
given by

⎛
⎜⎜⎜
⎝

𝑥

𝑐

⎞
⎟⎟⎟
⎠

⟼ 𝑥 ,
⎛
⎜
⎜
⎜
⎝

𝑥 𝑦

𝑐

𝜑 ⎞
⎟
⎟
⎟
⎠

⟼ (𝑥 𝜑−−−→ 𝑦) .

The codomain functor (1𝖢 ↓ 𝐹) → 𝟙 corresponds to the constant func-
tor 𝖢/𝑐 → 𝟙.

The domain functor (𝐹 ↓ 1𝖢) → 𝟙 corresponds to the constant func-
tor 𝑐/𝖢 → 𝟙. The codomain functor (𝐹 ↓ 1𝖢) → 𝖢 corresponds to the
functor 𝑐/𝖢 → 𝖢 given by

⎛
⎜⎜⎜
⎝

𝑐

𝑥

⎞
⎟⎟⎟
⎠

⟼ 𝑥 ,
⎛
⎜
⎜
⎜
⎝

𝑐

𝑥 𝑦𝜑

⎞
⎟
⎟
⎟
⎠

⟼ (𝑥 𝜑−−−→ 𝑦) .

Exercise 1.3.viii
Let 𝟙 be the category consisting of a single object ∗ and only the respective
identity morphism. Let 𝟚 be the category consisting of two objects, named 0
and 1, and a single non-identity morphism, namely 𝑓 ∶ 0 → 1. The unique
functor from 𝟚 to 𝟙 maps 𝑓 onto the identity morphism of ∗, which is an
isomorphism. But 𝑓 is not an isomorphism in 𝟚 because there exists no mor-
phism from 1 to 0 in 𝟚.

Exercise 1.3.ix
For isomorphisms

Every isomorphism of groups 𝜑 ∶ 𝐺 → 𝐻 induces isomorphisms of groups

Z(𝜑)∶ Z(𝐺) ⟶ Z(𝐻) , 𝑔 ⟼ 𝜑(𝑔) ,
C(𝜑)∶ C(𝐺) ⟶ C(𝐻) , 𝑔 ⟼ 𝜑(𝑔) ,

Aut(𝜑)∶ Aut(𝐺) ⟶ Aut(𝐻) , 𝜓 ⟼ 𝜑𝜓𝜑−1 .
In this way, the constructions Z, C and Aut become functors from 𝖦𝗋𝗈𝗎𝗉iso
to 𝖦𝗋𝗈𝗎𝗉.
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1.3 Functoriality

For epimorphisms

We use in following without proof that a homomorphism of groups is an
epimorphism in 𝖦𝗋𝗈𝗎𝗉 if and only if it is surjective.

• Let 𝜑 ∶ 𝐺 → 𝐻 be an epimorphism of groups. We claim that

𝜑(Z(𝐺)) ⊆ Z(𝐻) .
Indeed, let 𝑧 be an element of Z(𝐺) and let ℎ be an element of 𝐻 . There
exists by assumption some element 𝑔 of 𝐺 with ℎ = 𝜑(𝑔). It follows that

𝜑(𝑧)ℎ = 𝜑(𝑧)𝜑(𝑔) = 𝜑(𝑧𝑔) = 𝜑(𝑔𝑧) = 𝜑(𝑔)𝜑(𝑧) = ℎ𝜑(𝑧) .
This shows that 𝜑(𝑧) is contained in Z(𝐻), as claimed.

It follows that the homomorphism 𝜑 restricts to a homomorphism of
groups from Z(𝐺) to Z(𝐻). This observation allows us to extend Z to a
functor from 𝖦𝗋𝗈𝗎𝗉epi to 𝖦𝗋𝗈𝗎𝗉.

• Every homomorphism of groups 𝜑 ∶ 𝐺 → 𝐻 induces a homomorphism
groups from C(𝐺) to C(𝐻) by restriction. This entails that C extends to
a functor from 𝖦𝗋𝗈𝗎𝗉epi to 𝖦𝗋𝗈𝗎𝗉.

• An epimorphism of groups 𝜑 ∶ 𝐺 → 𝐻 does not necessarily induce a map
from Aut(𝐺) to Aut(𝐻): an automorphism 𝜓 of 𝐺 descends to an endomor-
phism of 𝐻 if and only if 𝜓(ker(𝜑)) ⊆ ker(𝜑).

There nevertheless exists a functor from 𝖦𝗋𝗈𝗎𝗉epi to 𝖦𝗋𝗈𝗎𝗉 that assigns
to each group its automorphism group. This is due to the following obser-
vation:

Claim 1 ([MSE18b]). Every functor from 𝖦𝗋𝗈𝗎𝗉iso to 𝖦𝗋𝗈𝗎𝗉 can be ex-
tended to a functor from 𝖦𝗋𝗈𝗎𝗉epi to 𝖦𝗋𝗈𝗎𝗉.

This observation in turn relies on the following observation:

Claim 2. Let 𝜑 ∶ 𝐺 → 𝐻 and 𝜓 ∶ 𝐻 → 𝐾 be two epimorphisms of groups.
The composite 𝜓𝜑 is an isomorphism if and only if both 𝜑 and 𝜓 are isomor-
phisms.

Proof. If both 𝜑 and 𝜓 are isomorphisms then their composite 𝜓𝜑 is again
an isomorphism.
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Suppose conversely that 𝜓𝜑 is an isomorphism. This entails that 𝜓𝜑 is
a monomorphism, whence 𝜑 is a monomorphism. As 𝜑 is both a mono-
morphism and an epimorphism in 𝖦𝗋𝗈𝗎𝗉, it is an isomorphism. It follows
that 𝜓 = 𝜓𝜑 ⋅ 𝜑−1 is a composite of isomorphisms and therefore also an
isomorphism. ∎
Proof of Claim 1. Let 𝐹 be a functor from 𝖦𝗋𝗈𝗎𝗉iso to 𝖦𝗋𝗈𝗎𝗉. We define an
extension 𝐹 ′ of 𝐹 by letting 𝐹 ′(𝜑) be the trivial homomorphism from 𝐹(𝐺)
to 𝐹(𝐻) for every epimorphism 𝜑 ∶ 𝐺 → 𝐻 that is not an isomorphism. We
need to prove that the assignment 𝐹 ′ is functorial. More specifically, we
need to check that 𝐹 ′ is compatible with both identities and composition.

◦ Let 𝐺 be any group. The identity homomorphism 1𝐺 is an isomorphism,
so we have

𝐹 ′(1𝐺) = 𝐹(1𝐺) = 1𝐹(𝐺) = 1𝐹 ′(𝐺)
by the functoriality of 𝐹 .

◦ Let 𝜑 ∶ 𝐺 → 𝐻 and 𝜓 ∶ 𝐻 → 𝐾 be two epimorphisms of groups. We need
to show that 𝐹 ′(𝜓𝜑) = 𝐹 ′(𝜓 )𝐹 ′(𝜑). We distinguish between two cases:
Case 1. Suppose that both 𝜑 and 𝜓 are isomorphisms. Then their com-

posite 𝜓𝜑 is again an isomorphism, whence

𝐹 ′(𝜓𝜑) = 𝐹(𝜓𝜑) = 𝐹(𝜓 )𝐹(𝜑) = 𝐹 ′(𝜓 )𝐹 ′(𝜑)
by the functoriality of 𝐹 .

Case 2. Suppose that either 𝜑 or 𝜓 is not an isomorphism. By definition
of 𝐹 ′, either 𝐹 ′(𝜑) or 𝐹 ′(𝜓 ) is trivial. The composite 𝐹 ′(𝜓 )𝐹 ′(𝜑)
is therefore again trivial. It also follows from Claim 2 that 𝜓𝜑
is not an isomorphism, whence 𝐹 ′(𝜓𝜑) is trivial. This shows
that 𝐹 ′(𝜓𝜑) = 𝐹 ′(𝜓 )𝐹 ′(𝜑), as both sides are trivial with the same
domain and same codomain. ∎

For homomorphisms

• IfZwere to extend to a functor from𝖦𝗋𝗈𝗎𝗉 to𝖦𝗋𝗈𝗎𝗉, then the commutative
diagram

𝑆3

ℤ/2 ℤ/2

sgn

1
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1.3 Functoriality

would result in the following commutative diagram:

Z(𝑆3)

Z(ℤ/2) Z(ℤ/2)1

We have Z(ℤ/2) = ℤ/2 and Z(𝑆3) = 1 (the trivial group), and therefore
would get the following commutative diagram:

1

ℤ/2 ℤ/21

The commutativity of this diagramwould mean that the identity homomor-
phism of ℤ/2 is trivial. But this is not the case!

• The construction C extends to a functor from 𝖦𝗋𝗈𝗎𝗉 to 𝖦𝗋𝗈𝗎𝗉 in the usual
way: every homomorphism of groups 𝜑 ∶ 𝐺 → 𝐻 satisfies 𝜑(C(𝐺)) ⊆ C(𝐻),
and therefore restricts to a homomorphism C(𝜑) from C(𝐺) to C(𝐻).

• It can be shown that Aut cannot be extended to a functor from 𝖦𝗋𝗈𝗎𝗉
to 𝖦𝗋𝗈𝗎𝗉. We refer to [MSE15] for more details on this claim.

Exercise 1.3.x

Let 𝜑 ∶ 𝐺 → 𝐻 be a homomorphism of groups. For every element 𝑔 of 𝐺,
the homomorphism 𝜑 maps the conjugacy class of 𝑔 into the conjugacy class
of 𝜑(𝑔). The homomorphism 𝜑 does therefore induce a map

Conj(𝜑)∶ Conj(𝐺) ⟶ Conj(𝐻) , [𝑔] ⟼ [𝜑(𝑔)] .

We need to verify the functoriality of Conj:

• We have for any two homomorphism of groups 𝜑 ∶ 𝐺 → 𝐻 and 𝜓 ∶ 𝐻 → 𝐾
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the sequence of equalities

Conj(𝜓 )(Conj(𝜑)([𝑔])) = Conj(𝜓 )([𝜑(𝑔)])
= [𝜓 (𝜑(𝑔))]
= [(𝜓𝜑)(𝑔)]
= Conj(𝜓𝜑)([𝑔])

for every 𝑔 ∈ 𝐺, and therefore the equality

Conj(𝜓𝜑) = Conj(𝜓 ) Conj(𝜑) .
• We also have for every group 𝐺 the sequence of equalities

Conj(1𝐺)([𝑔]) = [1𝐺(𝑔)] = [𝑔] = 1Conj(𝐺)([𝑔])
for every 𝑔 ∈ 𝐺, and therefore the equality

Conj(1𝐺) = 1Conj(𝐺) .
This proves the functoriality of Conj.

1.4 Naturality

Example 1.4.3
(vii)

Suppose that 𝛼 is a natural transformation from 𝐹 to 𝐺, where 𝐹 is the identity
functor of 𝖵𝖾𝖼𝗍𝕜, and

𝐺 ∶ 𝖵𝖾𝖼𝗍𝕜 ⟶ 𝖵𝖾𝖼𝗍𝕜 , 𝑉 ⟼ 𝑉 ⊗ 𝑉 , 𝑓 ⟼ 𝑓 ⊗ 𝑓 .
We then have for every linear map 𝑓 ∶ 𝕜 → 𝑉 the following commutative
square diagram:

𝕜 𝕜 ⊗ 𝕜

𝑉 𝑉 ⊗ 𝑉

𝛼𝕜

𝑓 𝑓⊗𝑓
𝛼𝑉
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1.4 Naturality

The linear map 𝛼 is given by 𝛼𝕜(1) = 𝜆1⊗ 1 for some scalar 𝜆 in 𝕜 because
both 𝕜 and 𝕜⊗𝕜 are one-dimensional with basis elements 1 and 1⊗1 respec-
tively. Let 𝑣 be an arbitrary vector of 𝑉 and let 𝑓 be the unique linear map
from 𝕜 to 𝑉 with 𝑓 (1) = 𝑣 . It follows from the commutativity of the above
square diagram that

𝛼𝑉 (𝑣) = 𝛼𝑉 (𝑓 (1))
= (𝑓 ⊗ 𝑓 )(𝛼𝕜(1))
= (𝑓 ⊗ 𝑓 )(𝜆1 ⊗ 1)
= 𝜆(𝑓 ⊗ 𝑓 )(1 ⊗ 1)
= 𝜆𝑓 (1) ⊗ 𝑓 (1)
= 𝜆𝑣 ⊗ 𝑣

for every 𝑣 ∈ 𝑉 . This shows that the linear map 𝛼𝑉 is uniquely determined
by the scalar 𝜆 via 𝛼𝑉 (𝑣) = 𝜆𝑣 ⊗ 𝑣 for every 𝑣 ∈ 𝑉 .

However, the map

𝑉 ⟶ 𝑉 ⊗ 𝑉 , 𝑣 ⟼ 𝜆𝑣 ⊗ 𝑣

is linear if and only if either 𝑉 = 0, or 𝜆 = 0, or if simultaneously dim(𝑉 ) = 1
and 𝕜 = 𝔽2. This can be seen as follows:

• Suppose that 𝑉 is at least two-dimensional. There then exist two linearly
independent vectors 𝑣1 and 𝑣2 in 𝑉 . The vectors

(𝑣1 + 𝑣2) ⊗ (𝑣1 + 𝑣2) = 𝑣1 ⊗ 𝑣1 + 𝑣1 ⊗ 𝑣2 + 𝑣2 ⊗ 𝑣1 + 𝑣2 ⊗ 𝑣2
and 𝑣1 ⊗ 𝑣1 + 𝑣2 ⊗ 𝑣2 are then distinct. The map 𝑣 ↦ 𝜆𝑣 ⊗ 𝑣 is therefore
not additive if 𝜆 is nonzero.

• Suppose that 𝕜 is not 𝔽2. There then exists a scalar 𝜇 in 𝕜 that is distinct
to 0 and 1, and therefore satisfies 𝜇2 ≠ 𝜇. If 𝑉 is also nonzero, then there
exists a nonzero vector 𝑣 in 𝑉 . The two vectors (𝜇𝑣) ⊗ (𝜇𝑣) = 𝜇2𝑣 ⊗ 𝑣
and 𝜇𝑣 ⊗ 𝑣 are then distinct. The map 𝑣 ↦ 𝜆𝑣 ⊗ 𝑣 is therefore not
homogeneous if 𝜆 is nonzero.

This shows that the only natural transformation from 𝐹 to 𝐺 is given by the
zero map in each of its coordinates (corresponding to the above case 𝜆 = 0).
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Exercise 1.4.i

Let 𝖢 be the domain of the two functors 𝐹 and 𝐺.
The naturality of 𝛼 ensures for every morphism 𝑓 ∶ 𝑥 → 𝑦 in 𝖢 the com-

mutativity of the following square diagram:

𝐹(𝑥) 𝐹(𝑦)

𝐺(𝑥) 𝐺(𝑦)

𝐹(𝑓 )

𝛼𝑥 𝛼𝑦
𝐺(𝑓 )

This commutativity is equivalent to the equality 𝛼𝑦 ⋅ 𝐹 (𝑓 ) = 𝐺(𝑓 ) ⋅ 𝛼𝑥 . We can
rearrange this equality to 𝐹(𝑓 ) ⋅ 𝛼−1𝑥 = 𝛼−1𝑦 ⋅ 𝐺(𝑓 ). This new equality gives us
the commutativity of the following diagram:

𝐺(𝑥) 𝐺(𝑦)

𝐹(𝑥) 𝐹(𝑦)

𝐺(𝑓 )

𝛼−1𝑥 𝛼−1𝑦

𝐹(𝑓 )

The commutativity of this diagram, for every morphism 𝑓 ∶ 𝑥 → 𝑦 in 𝖢, tells
us that the family (𝛼−1𝑥 )𝑥∈𝖢 is a natural transformation from 𝐺 to 𝐹 .

Exercise 1.4.ii

Let 𝐺 and 𝐻 be two groups. We have already seen in Exercise 1.3.i (page 22
of the textbook) that a functor Φ∶ 𝖡𝐺 → 𝖡𝐻 is the same a homomorphism
of groups 𝜑 ∶ 𝐺 → 𝐻 , via the assignments Φ(∗𝖡𝐺) = ∗𝖡𝐻 and Φ(𝑔) = 𝜑(𝑔) for
every 𝑔 ∈ 𝐺.

Let Φ,Ψ∶ 𝖡𝐺 → 𝖡𝐻 be two functors with corresponding homomorphisms
of groups 𝜑, 𝜓 ∶ 𝐺 → 𝐻 . A natural transformation 𝛼 ∶ Φ ⇒ Ψ is a fam-
ily (𝛼𝑥)𝑥∈𝖡𝐺 consisting of morphisms 𝛼𝑥 ∶ Φ(𝑥) → Ψ(𝑥) for 𝑥 ∈ 𝖡𝐺 such that
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the square diagram

Φ(𝑥) Φ(𝑦)

Ψ(𝑥) Ψ(𝑦)

Φ(𝑔)

𝛼𝑥 𝛼𝑦
Ψ(𝑔)

commutes for every morphism 𝑔 ∶ 𝑥 → 𝑦 in 𝖡𝐺. Given the specific shapes
of 𝖡𝐺 and 𝖡𝐻 , the entire transformation 𝛼 consists of the single element 𝛼∗
of 𝐻 , which has to satisfy the commutativity of the diagram

∗ ∗

∗ ∗

𝜑(𝑔)

𝛼∗ 𝛼∗
𝜓(𝑔)

for every 𝑔 ∈ 𝐺. A natural transformation from Φ to Ψ is therefore “the same”
as an element ℎ of 𝐻 such that ℎ𝜑(𝑔) = 𝜓(𝑔)ℎ for every 𝑔 ∈ 𝐺. In other words,
the element ℎ needs to satisfy 𝜓(𝑔) = ℎ𝜑(𝑔)ℎ−1 for every 𝑔 ∈ 𝐺.

We see overall that there exists a natural transformation from Φ to Ψ if and
only if 𝜑 is conjugated to 𝜓 . More explicitly, natural transformations from Φ
to Ψ correspond bijectively to elements of 𝐻 that realize the conjugation of 𝜑
and 𝜓 .

Exercise 1.4.iii
Let 𝑃 and 𝑄 be two preordered sets with corresponding categories 𝖯 and 𝖰 .

We have seen in Exercise 1.3.ii that a functor 𝐹 from 𝖯 to 𝖰 is “the same”
as an isotone map 𝑓 from 𝑃 to 𝑄, via the assignments 𝐹(𝑝) = 𝑓 (𝑝) for ev-
ery 𝑝 ∈ 𝑃 , and 𝐹(𝑝1 → 𝑝2) = (𝑓 (𝑝1) → 𝑓 (𝑝2)) for all 𝑝1, 𝑝2 ∈ 𝑃 . Let
in the following 𝐹 , 𝐺 ∶ 𝖯 → 𝖰 be two functors with corresponding isotone
maps 𝑓 , 𝑔 ∶ 𝑃 → 𝑄.

There exists at most one natural transformation from 𝐹 to 𝐺 since for every
element 𝑝 on 𝑃 there exists at most one morphism from 𝐹(𝑝) to 𝐺(𝑝) in 𝖰 .
The existence of a transformation from 𝐹 to 𝐺 is equivalent to the existence of
a family (𝛼𝑝)𝑝∈𝑃 of morphisms 𝛼𝑝 ∶ 𝑓 (𝑝) → 𝑔(𝑝), which in turn is equivalent
to having 𝑓 (𝑝) ≤ 𝑔(𝑝) for every 𝑝 ∈ 𝑃 . Such a transformation is then au-
tomatically natural since every diagram in 𝖰 commutes (because every two
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morphisms in 𝖰 with the same domain and the same codomain are already
equal).

We find overall that there exists a natural transformation from 𝐹 to 𝐺 if
and only if 𝑓 ≤ 𝑔, in the sense that 𝑓 (𝑝) ≤ 𝑔(𝑝) for every 𝑝 ∈ 𝑃 , and that this
natural transformation is then unique.

Exercise 1.4.iv

If 𝑓∗ = 𝑔∗, then by considering more specifically 𝑓∗, 𝑔∗∶ 𝖢(𝑐, 𝑐) → 𝖢(𝑐, 𝑑) we
find that

𝑓 = 𝑓 ⋅ 1𝑐 = 𝑓∗(1𝑐) = 𝑔∗(1𝑐) = 𝑔 ⋅ 1𝑐 = 𝑔 .
Similarly, if 𝑓 ∗ = 𝑔∗, then by considering 𝑓 ∗, 𝑔∗∶ 𝖢(𝑑, 𝑑) → 𝖢(𝑐, 𝑑) we find
that

𝑓 = 1𝑑 ⋅ 𝑓 = 𝑓 ∗(1𝑑) = 𝑔∗(1𝑑) = 1𝑑 ⋅ 𝑔 = 𝑔 .
(One could also derive the implication 𝑓 ∗ = 𝑔∗ ⟹ 𝑓 = 𝑔 from the implica-
tion 𝑓∗ = 𝑔∗ ⟹ 𝑓 = 𝑔 via duality.)

Exercise 1.4.v

For every object 𝑥 = (𝑑, 𝑒, 𝑓 ) of the comma category 𝐹 ↓ 𝐺 let 𝛼𝑥 be the
morphism

𝑓 ∶ 𝐹𝑑 ⟶ 𝐺𝑒 .
Then, since 𝑑 = dom𝑥 and 𝑒 = codom 𝑥 , the component 𝛼𝑥 is a morphism
from 𝐹 dom 𝑥 to 𝐺 codom 𝑥 . Therefore, 𝛼 is a transformation from 𝐹 dom
to 𝐺 codom. We claim that this transformation is natural.

Indeed, let (ℎ, 𝑘)∶ 𝑥 → 𝑥′ be an arbitrary morphism in 𝐹 ↓ 𝐺 with do-
main 𝑥 = (𝑑, 𝑒, 𝑓 ) and codomain 𝑥′ = (𝑑′, 𝑒′, 𝑓 ′). This means that we have
the following commutative diagram:

𝐹𝑑 𝐺𝑒

𝐹𝑑′ 𝐺𝑒′

𝑓

𝐹ℎ 𝐺𝑘
𝑓 ′

28



1.5 Equivalence of categories

This diagram can be rewritten as follows:

𝐹 dom 𝑥 𝐺 codom 𝑥

𝐹 dom 𝑥′ 𝐺 codom 𝑥′

𝛼𝑥

𝐹 dom (ℎ,𝑘) 𝐺 codom (ℎ,𝑘)
𝛼𝑥′

The commutativity of this square diagram shows precisely that 𝛼 is natural.

Exercise 1.4.vi
In the given diagrams we have morphisms between objects in the codomain
category of 𝐹 and objects in the codomain category of 𝐺. For this to make
sense we need both functors to have the same codomain category.

1.5 Equivalence of categories

Equivalences between skeletal categories are
isomorphisms
For every category 𝖢 let Iso(𝖢) be the class of isomorphism classes of ob-
jects of 𝖢. We note that every functor 𝐹 ∶ 𝖢 → 𝖣 induces a function Iso(𝐹)
from Iso(𝖢) to Iso(𝖣) via [𝑐] ↦ [𝐹𝑐]. The construction Iso is functorial.

Lemma 1.A. Let 𝐹 , 𝐺 ∶ 𝖢 → 𝖣 be two parallel functors. If 𝐹 and 𝐺 are iso-
morphic, then the induced maps Iso(𝐹) and Iso(𝐺) are equal.

Proof. We have for every object 𝑐 of𝖢 the isomorphism 𝐹𝑐 ≅ 𝐺𝑐 and therefore
the equality

Iso(𝐹)(𝑐) = [𝐹 𝑐] = [𝐺𝑐] = Iso(𝐺)(𝑐) .
This shows that Iso(𝐹) = Iso(𝐺). ∎
Proposition 1.B. Let 𝐹 ∶ 𝖢 → 𝖣 be an equivalence of categories with quasi-
inverse 𝐺 ∶ 𝖣 → 𝖢. The induced map Iso(𝐹) is bijective with inverse Iso(𝐺).
Proof. There exists an isomorphism of functors between 𝐺𝐹 and 1𝖢. It follows
from Lemma 1.A that

Iso(𝐺) Iso(𝐹) = Iso(𝐺𝐹) = Iso(1𝖢) = 1Iso(𝖢) .
We find in the same way that also Iso(𝐹) Iso(𝐺) = 1Iso(𝖣). ∎

29



Chapter 1 Categories, Functors, Natural Transformations

Proposition 1.C. Let 𝐹 be a functor that is full, faithful, and induces a bijection
between objects. Then 𝐹 is an isomorphism. ∎

Proof. It follows that 𝐹 also induces a bijection on morphisms. ∎

Corollary 1.D. An equivalence between skeletal categories is already an iso-
morphism of categories.

Proof. Let 𝐹 ∶ 𝖢 → 𝖣 be an equivalence between skeletal categories. It fol-
lows from Proposition 1.B and 𝖢 and 𝖣 being skeletal that 𝐹 induces a bijec-
tion between objects. The functor 𝐹 is also full and faithful. It is therefore an
isomorphism of categories by Proposition 1.C. ∎

A category equivalent to a groupoid is itself a groupoid

This statement is a consequence of Exercise 1.5.iv, as equivalences reflect iso-
morphisms.

Exercise 1.5.i

We first prove an auxiliary result.

Proposition 1.E. Let 𝖢 and 𝖣 be categories and let 𝐹 , 𝐺 ∶ 𝖢 → 𝖣 be functors.

1. Let 𝛼 ∶ 𝐹 ⇒ 𝐺 be a natural transformation. For everymorphism 𝑓 ∶ 𝑥 → 𝑦
in 𝖢 let 𝜂𝑓 ∶ 𝐹𝑥 → 𝐺𝑦 be the diagonal morphism in the resulting commu-
tative square diagram:

𝐹𝑥 𝐹𝑦

𝐺𝑥 𝐺𝑦

𝐹𝑓

𝛼𝑥
𝜂𝑓 𝛼𝑦

𝐺𝑓

(1.2)

In other words, 𝜂𝑓 = 𝛼𝑦 ⋅ 𝐹 𝑓 and also 𝜂𝑓 = 𝐺𝑓 ⋅ 𝛼𝑥 .
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Then the following triangular diagrams commute for all composable
morphisms 𝑓 ∶ 𝑥 → 𝑦 and 𝑔 ∶ 𝑦 → 𝑧 in 𝖢:

𝐹𝑥

𝐺𝑦 𝐺𝑧

𝜂𝑓 𝜂𝑔𝑓

𝐺𝑔

𝐹𝑥 𝐹𝑦

𝐺𝑧

𝐹𝑓

𝜂𝑔𝑓 𝜂𝑔

In other words, we have

𝜂𝑔𝑓 = 𝐺𝑔 ⋅ 𝜂𝑓 and 𝜂𝑔𝑓 = 𝜂𝑔 ⋅ 𝐹 𝑓 . (1.3)

2. Suppose conversely that (𝜂𝑓 )𝑓 is a family of morphisms 𝜂𝑓 ∶ 𝐹𝑥 → 𝐺𝑦 ,
where 𝑓 ∶ 𝑥 → 𝑦 ranges through the morphisms in 𝖢, such that the condi-
tions (1.3) hold for all morphisms 𝑓 ∶ 𝑥 → 𝑦 and 𝑔 ∶ 𝑦 → 𝑧 in 𝖢.

Then there exists a unique natural transformation 𝛼 ∶ 𝐹 ⇒ 𝐺 such that
the diagram (1.2) commutes for every morphism 𝑓 ∶ 𝑥 → 𝑦 in 𝖢.

3. The above two constructions are mutually inverse, and thus result in a
bijection between

• natural transformations 𝛼 ∶ 𝐹 ⇒ 𝐺 and
• families (𝜂𝑓 )𝑓 of morphisms 𝜂𝑓 ∶ 𝐹𝑥 → 𝐺𝑦 , where 𝑓 ∶ 𝑥 → 𝑦 ranges
through the morphisms in 𝖢, such that 𝜂𝑔𝑓 = 𝐺𝑔 ⋅ 𝜂𝑓 and 𝜂𝑔𝑓 = 𝜂𝑔 ⋅ 𝐹 𝑓
for all morphisms 𝑓 ∶ 𝑥 → 𝑦 and 𝑔 ∶ 𝑦 → 𝑧 in 𝖢.

Proof.

1. We have for all morphisms 𝑓 ∶ 𝑥 → 𝑦 and 𝑔 ∶ 𝑦 → 𝑧 in 𝖢 the following
two commutative diagrams:

𝐹𝑥 𝐹𝑦 𝐹𝑧

𝐺𝑥 𝐺𝑦 𝐺𝑧

𝐹(𝑔𝑓 )

𝐹𝑓

𝛼𝑥
𝜂𝑓

𝐹𝑔

𝛼𝑦
𝜂𝑔 𝛼𝑧

𝐺𝑓

𝐺(𝑔𝑓 )

𝐺𝑔

𝐹𝑥 𝐹𝑧

𝐺𝑥 𝐺𝑧

𝐹(𝑔𝑓 )

𝛼𝑥
𝜂𝑔𝑓 𝛼𝑧

𝐺(𝑔𝑓 )
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The outer square part of these diagrams is the same. The overall diagonal
morphism from 𝐹𝑥 to 𝐺𝑧 is therefore the same in both diagrams. This
entails that 𝜂𝑔𝑓 = 𝜂𝑔 ⋅ 𝐹 𝑓 as well as 𝜂𝑔𝑓 = 𝐺𝑔 ⋅ 𝜂𝑓 .

2. If such a natural transformation 𝛼 were to exist, then we would have for
every object 𝑥 of 𝖢 the following commutative square diagram:

𝐹𝑥 𝐹𝑥

𝐺𝑥 𝐺𝑥

𝐹1𝑥

𝛼𝑥
𝜂1𝑥 𝛼𝑥

𝐺1𝑥

It would then follow that

𝜂1𝑥 = 𝛼𝑥 ⋅ 𝐹1𝑥 = 𝛼𝑥 ⋅ 1𝐹𝑥 = 𝛼𝑥 .

This shows the uniqueness of 𝛼 .
To prove the existence of 𝛼 we conversely set

𝛼𝑥 ≔ 𝜂1𝑥
for every object 𝑥 of 𝖢, which is a morphism from 𝐹𝑥 to 𝐺𝑥 . We need to
show that the family 𝛼 ≔ (𝛼𝑥)𝑥 is a natural transformation from 𝐹 to 𝐺,
and that 𝜂𝑓 = 𝛼𝑦 ⋅ 𝐹 𝑓 and 𝜂𝑓 = 𝐺𝑓 ⋅ 𝛼𝑥 for every morphism 𝑓 ∶ 𝑥 → 𝑦 in 𝖢.
These two equalities hold because

𝜂𝑓 = 𝜂1𝑦 ⋅𝑓 = 𝜂1𝑦 ⋅ 𝐹 𝑓 = 𝛼𝑦 ⋅ 𝐹 𝑓

and similarly
𝜂𝑓 = 𝜂𝑓 ⋅1𝑥 = 𝐺𝑓 ⋅ 𝜂1𝑥 = 𝐺𝑓 ⋅ 𝛼𝑥 ,

and the resulting sequence of equalities 𝛼𝑦 ⋅ 𝐹 𝑓 = 𝜂𝑓 = 𝐺𝑓 ⋅ 𝛼𝑥 also shows
that the family 𝛼 is natural.

3. Let 𝛼 ∶ 𝐹 ⇒ 𝐺 be a natural transformation. Let (𝜂𝑓 )𝑓 be the resulting
family of morphisms 𝜂𝑓 ∶ 𝐹𝑥 → 𝐺𝑦 , where 𝑓 ∶ 𝑥 → 𝑦 ranges through the
morphisms in 𝖢, given by 𝜂𝑓 = 𝛼𝑦 ⋅ 𝐹 𝑓 (and also 𝜂𝑓 = 𝐺𝑓 ⋅ 𝛼𝑥 ). Let 𝛼′
be the resulting natural transformation from 𝐹 to 𝐺 given by 𝛼′𝑥 = 𝜂1𝑥 for

32



1.5 Equivalence of categories

every object 𝑥 of 𝖢. We then have for every object 𝑥 of 𝖢 the sequence of
equalities

𝛼′𝑥 = 𝜂1𝑥 = 𝛼𝑥 ⋅ 𝐹1𝑥 = 𝛼𝑥 ⋅ 1𝐹𝑥 = 𝛼𝑥 ,
which shows that 𝛼′ = 𝛼 .

Let now conversely (𝜂𝑓 )𝑓 be a family of morphisms 𝜂𝑓 ∶ 𝐹𝑥 → 𝐺𝑦 ,
where 𝑓 ∶ 𝑥 → 𝑦 ranges through the morphisms in 𝖢, satisfying the two
conditions 𝜂𝑔𝑓 = 𝐺𝑔 ⋅ 𝜂𝑓 and 𝜂𝑔𝑓 = 𝜂𝑔 ⋅ 𝐹 𝑓 for all morphisms 𝑓 ∶ 𝑥 → 𝑦
and 𝑔 ∶ 𝑦 → 𝑧 in 𝖢. Let 𝛼 be the resulting natural transformation from 𝐹
to 𝐺 given by 𝛼𝑥 = 𝜂1𝑥 for every object 𝑥 of 𝖢. Let (𝜂′𝑓 )𝑓 be the resulting
family of morphisms 𝜂′𝑓 ∶ 𝐹𝑥 → 𝐺𝑦 , where once again 𝑓 ∶ 𝑥 → 𝑦 ranges
through the morphisms in 𝖢, with 𝜂′𝑓 given by 𝜂′𝑓 = 𝛼𝑦 ⋅ 𝐹 𝑓 (and also
equivalently 𝜂′𝑓 = 𝐺𝑓 ⋅ 𝛼𝑥 ). Then

𝜂′𝑓 = 𝛼𝑦 ⋅ 𝐹 𝑓 = 𝜂1𝑦 ⋅ 𝐹 𝑓 = 𝜂1𝑦 ⋅𝑓 = 𝜂𝑓
for every morphism 𝑓 ∶ 𝑥 → 𝑦 in 𝖢. ∎
We now return to the exercise at hand. We note that a functor

𝐻 ∶ 𝖢 × 𝟚 ⟶ 𝖣
consists of the following data:

D1. For every object 𝑥 of 𝖢 an object 𝐻(𝑥, 0) of 𝖣.

D2. For every object 𝑥 of 𝖢 an object 𝐻(𝑥, 1) of 𝖣.

D3. For every morphism 𝑓 ∶ 𝑥 → 𝑦 in 𝖢 a morphism 𝐻(𝑓 , 10) from 𝐻(𝑥, 0)
to 𝐻(𝑦, 0) in 𝖣.

D4. For every morphism 𝑓 ∶ 𝑥 → 𝑦 in 𝖢 a morphism 𝐻(𝑓 , 11) from 𝐻(𝑥, 1)
to 𝐻(𝑦, 1) in 𝖣.

D5. For every morphism 𝑓 ∶ 𝑥 → 𝑦 in 𝖢 a morphism 𝐻(𝑓 , 𝑗) from 𝐻(𝑥, 0)
to 𝐻(𝑦, 1) in 𝖣, where 𝑗 ∶ 0 → 1 is the unique non-identity morphism
in 𝟚.

These data are subject to the following conditions:

C1. For every object 𝑥 of 𝖢 the two equalities

C1.a. 𝐻(1𝑥 , 10) = 1𝐻(𝑥,0) and
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C1.b. 𝐻(1𝑥 , 11) = 1𝐻(𝑥,1).
C2. For all morphisms 𝑓 ∶ 𝑥 → 𝑦 and 𝑔 ∶ 𝑦 → 𝑧 in 𝖢 the four equalities

C2.a. 𝐻(𝑔𝑓 , 10) = 𝐻(𝑔, 10) ⋅ 𝐻(𝑓 , 10),
C2.b. 𝐻(𝑔𝑓 , 11) = 𝐻(𝑔, 11) ⋅ 𝐻(𝑔, 10),
C2.c. 𝐻(𝑔𝑓 , 𝑗) = 𝐻(𝑔, 𝑗) ⋅ 𝐻(𝑓 , 10),
C2.d. 𝐻(𝑔𝑓 , 𝑗) = 𝐻(𝑔, 11) ⋅ 𝐻(𝑓 , 𝑗).

For every object 𝑥 of 𝖢 let

𝐹𝑥 ≔ 𝐻(𝑥, 0) , 𝐺𝑥 ≔ 𝐻(𝑥, 1) ,
and for every morphism 𝑓 ∶ 𝑥 → 𝑦 in 𝖢 let

𝐹𝑓 ≔ 𝐻(𝑓 , 10) , 𝐺𝑓 ≔ 𝐻(𝑓 , 11) , 𝜂𝑓 ≔ 𝐻(𝑓 , 𝑗) .
The datum of 𝐹 is equivalent to the data D1 and D3, the datum of 𝐺 is equiva-
lent to the data D2 and D4, and the datum of 𝜂 is equivalent to the datum D5.
The combination of conditions C1.a and C2.a is equivalent to the functoriality
of 𝐹 , the combination of conditions C1.b and C2.b is equivalent to the functo-
riality of 𝐺. The combination of conditions C2.c and C2.d is then equivalent
to 𝜂 defining a natural transformation from 𝐹 to 𝐺 via Proposition 1.E.

This shows that functors 𝐻 ∶ 𝖢 × 𝟚 → 𝖣 correspond to pairs of func-
tors 𝐹 , 𝐺 ∶ 𝖢 → 𝖣 together with a natural transformation 𝛼 ∶ 𝐹 ⇒ 𝐺. This
correspondence is given by 𝐹 = 𝐻𝑖0 and 𝐺 = 𝐻𝑖1, and the natural transforma-
tion 𝛼 corresponds to the morphisms 𝐻(𝑓 , 𝑗)∶ 𝐹𝑥 → 𝐺𝑦 , where 𝑓 ∶ 𝑥 → 𝑦
ranges through the morphisms in 𝖢, as laid out in Proposition 1.E.

Exercise 1.5.ii
Wewill show that the category Γop is isomorphic to 𝖥𝗂𝗇∂. As 𝖥𝗂𝗇∂ is equivalent
to 𝖥𝗂𝗇∗, this then also shows that Γop is equivalent to 𝖥𝗂𝗇∗. (We have seen in
Example 1.5.6 that 𝖲𝖾𝗍∂ is equivalent to 𝖲𝖾𝗍∗. This equivalence restricts to an
equivalence of categories between 𝖥𝗂𝗇∂ and 𝖥𝗂𝗇∗.)

To prove the claimed isomorphism between Γop and 𝖥𝗂𝗇∂, we will construct
mutually inverse contravariant functors 𝐹 and 𝐺 between Γ and 𝖥𝗂𝗇∂. The
main observation is that a partially defined function 𝑓 ∶ 𝑇 → 𝑆 is uniquely
determined by its fibres 𝑓 −1(𝑠), which are disjoint subsets of 𝑇 indexed by 𝑆.
Such an indexed family of pairwise disjoint subsets has the same data as a
morphism from 𝑆 to 𝑇 in Γ.
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The functor 𝐹
We start with the functor 𝐹 ∶ Γop → 𝖥𝗂𝗇∂.

We define 𝐹 on objects as 𝐹(𝑆) ≔ 𝑆 for every finite set 𝑆.
For everymorphism 𝜃 ∶ 𝑆 → 𝑇 in Γ let 𝐹(𝜃) be the partially defined function

from 𝑇 to 𝑆 given by

𝐹(𝜃)(𝑡) = 𝑠 if and only if 𝑡 ∈ 𝜃(𝑠)
for all 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 . In other words, the set 𝜃(𝑠) is the fibre of 𝑠 under 𝐹(𝜃):

𝐹(𝜃)−1(𝑠) = 𝜃(𝑠) .
The partially defined function 𝐹(𝜃) is well-defined since the sets 𝜃(𝑠), where 𝑠
ranges through 𝑆, are pairwise disjoint.2

We us now verify the functoriality of 𝐹 .
Let 𝑆 be a finite set, regarded as an object of Γ, and let 𝜄𝑆 be the identity

morphism of 𝑆 in Γ. In other words, 𝜄𝑆 is the function

𝜄𝑆 ∶ 𝑆 ⟶ P(𝑆) , 𝑠 ⟼ {𝑠} .
The resulting function 𝐹(𝜄𝑆)∶ 𝑆 → 𝑆 is then given by 𝐹(𝜄𝑆)(𝑠) = 𝑠 for ev-
ery 𝑠 ∈ 𝑆, whence 𝐹(𝜄𝑆) is the identity function on 𝑆. This shows that the
assignment 𝐹 preserves identities.

Let 𝜃 be a morphism in Γ from a set 𝑆 to a set 𝑇 , and let 𝜎 be a mor-
phism in Γ from 𝑇 to a set 𝑈 . (Therefore, 𝜃 and 𝜎 are functions 𝜃 ∶ 𝑆 → P(𝑇 )
and 𝜎 ∶ 𝑇 → P(𝑈 ).) We have for all 𝑠 ∈ 𝑆, 𝑢 ∈ 𝑈 the sequence of equivalences

𝐹(𝜎𝜃)(𝑢) = 𝑠
⟺ 𝑢 ∈ (𝜎𝜃)(𝑠)
⟺ 𝑢 ∈ ⋃𝑡∈𝜃(𝑠) 𝜎(𝑡)
⟺ there exists some 𝑡 ∈ 𝜃(𝑠) with 𝑢 ∈ 𝜎(𝑡)
⟺ there exists some 𝑡 ∈ 𝑇 with 𝑡 ∈ 𝜃(𝑠) and 𝑢 ∈ 𝜎(𝑡)
⟺ there exists some 𝑡 ∈ 𝑇 with 𝐹(𝜃)(𝑡) = 𝑠 and 𝐹(𝜎)(𝑢) = 𝑡
⟺ 𝐹(𝜃)(𝐹(𝜎)(𝑢)) = 𝑠
⟺ (𝐹(𝜃) ∘ 𝐹 (𝜎))(𝑢) = 𝑠 .

This shows that 𝐹(𝜎𝜃) = 𝐹(𝜃) ∘ 𝐹 (𝜎).
We have thus shown that 𝐹 is a contravariant functor from Γ to 𝖥𝗂𝗇∂.

2The partially defined function 𝐹(𝜃) is a total function if and only if the set 𝑇 is completely
covered by the sets 𝜃(𝑠) with 𝑠 ∈ 𝑆.
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The functor 𝐺
We now define the functor 𝐺.

The action of 𝐺 on objects is given by 𝐺(𝑆) = 𝑆 for every finite set 𝑆.
For every partially defined function 𝑓 ∶ 𝑆 → 𝑇 between finite sets 𝑆 and 𝑇

let 𝐺(𝑓 ) be the induced function

𝐺(𝑓 )∶ 𝑇 ⟶ P(𝑆) , 𝑡 ⟼ 𝑓 −1(𝑡) .

The fibres 𝑓 −1(𝑡), where 𝑡 ranges through 𝑇 , are pairwise disjoint. The func-
tion 𝐺(𝑓 ) is therefore a morphism from 𝑇 to 𝑆 in Γ.

We have to verify the contravariant functoriality of 𝐺.
Let 𝑆 be a set and let 1𝑆 be the identity function on 𝑆. Then

𝐺(1𝑆)(𝑠) = 1−1𝑆 (𝑠) = {𝑠} = 𝜄𝑆(𝑠)

for every 𝑠 ∈ 𝑆, where 𝜄𝑆 denotes the identity morphism of 𝑆 in Γ, and there-
fore 𝐺(1𝑆) = 𝜄𝑆 . This shows that the assignment 𝐺 preserves identities.

Let 𝑓 ∶ 𝑆 → 𝑇 and 𝑔 ∶ 𝑇 → 𝑈 be partially defined functions between
sets 𝑆, 𝑇 and 𝑈 . We have for every 𝑢 ∈ 𝑈 the sequence of equalities

𝐺(𝑔 ∘ 𝑓 )(𝑢) = (𝑔 ∘ 𝑓 )−1(𝑢)
= 𝑓 −1(𝑔−1(𝑢))
= ⋃𝑡∈𝑔−1(𝑢) 𝑓 −1(𝑡)
= ⋃𝑡∈𝐺(𝑔)(𝑢) 𝐺(𝑓 )(𝑡)
= (𝐺(𝑓 ) ∘ 𝐺(𝑔))(𝑢) ,

and therefore the equality 𝐺(𝑔 ∘ 𝑓 ) = 𝐺(𝑓 ) ∘ 𝐺(𝑔).

The functors are mutually inverse

It remains to check that the functors 𝐹 and 𝐺 are mutually inverse.
We have for every finite set 𝑆 the sequences of equalities

𝐺(𝐹(𝑆)) = 𝐺(𝑆) = 𝑆 , 𝐹 (𝐺(𝑆)) = 𝐹(𝑆) = 𝑆 ,

which tells us that 𝐹 and 𝐺 are mutually inverse on objects.
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Let 𝜃 be a morphism in Γ from a set 𝑆 to a set 𝑇 . We have for all 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇
the sequence of equivalences

𝑠 ∈ (𝐺𝐹)(𝜃)(𝑡)
⟺ 𝑠 ∈ 𝐺(𝐹(𝜃))(𝑡)
⟺ 𝑠 ∈ 𝐹(𝜃)−1(𝑡)
⟺ 𝐹(𝜃)(𝑠) = 𝑡
⟺ 𝑠 ∈ 𝜃(𝑡) .

This shows that (𝐺𝐹)(𝜃) = 𝜃 for every morphism 𝜃 in Γ.
Let 𝑓 ∶ 𝑆 → 𝑇 be a partially defined function between sets 𝑆 and 𝑇 . We

have for all 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 the sequence of equivalences

(𝐹𝐺)(𝑓 )(𝑠) = 𝑡
⟺ 𝐹(𝐺(𝑓 ))(𝑠) = 𝑡
⟺ 𝑠 ∈ 𝐺(𝑓 )(𝑡)
⟺ 𝑠 ∈ 𝑓 −1(𝑡)
⟺ 𝑓 (𝑠) = 𝑡 .

This shows that (𝐹𝐺)(𝑓 ) = 𝑓 for every morphism 𝑓 in 𝖥𝗂𝗇∂.
We have thus shown that the two functors 𝐹 and 𝐺 are mutually inverse.

Exercise 1.5.iii

We denote the given isomorphisms by 𝜑 ∶ 𝑎 → 𝑎′ and 𝜓 ∶ 𝑏 → 𝑏′.
The commutativities of the four square diagrams are equivalent to the fol-

lowing four equations respectively:

𝜓𝑓 𝜑−1 = 𝑓 ′ , 𝜓 𝑓 = 𝑓 ′𝜑 , 𝑓 𝜑−1 = 𝜓−1𝑓 ′ , 𝑓 = 𝜓−1𝑓 ′𝜑 .
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These four equations are equivalent because 𝜓 and 𝜑 are isomorphisms:

𝜓𝑓 𝜑−1 = 𝑓 ′

𝜓𝑓 = 𝑓 ′𝜑 𝑓 𝜑−1 = 𝜓−1𝑓 ′

𝑓 = 𝜓−1𝑓 ′𝜑

(−)∘𝜑 𝜓−1∘(−)
(−)∘𝜑−1

𝜓−1∘(−)

𝜓∘(−)

(−)∘𝜑
𝜓∘(−) (−)∘𝜑−1

I hence suffices to show for one of these four equations that there exists a
unique morphism 𝑓 ′∶ 𝑎′ → 𝑏′ satisfying this equation. We can use the first
equation, as already explained in the textbook.

Exercise 1.5.iv
(i)

Let 𝑓 ∶ 𝑥 → 𝑦 be a morphism in 𝖢 for which the morphism 𝐹𝑓 ∶ 𝐹𝑥 → 𝐹𝑦 is
an isomorphism in 𝖣. This means that there exists a morphism 𝑔 ∶ 𝐹𝑦 → 𝐹𝑥
in 𝖣 with both 𝐹𝑓 ⋅ 𝑔 = 1𝐹𝑦 and 𝑔 ⋅ 𝐹𝑓 = 1𝐹𝑥 .

There exists a morphism 𝑓 ′∶ 𝑦 → 𝑥 in 𝖢 with 𝑔 = 𝐹𝑓 ′ because the func-
tor 𝐹 is full. It follows from the sequence of equalities

𝐹(𝑓 ⋅ 𝑓 ′) = 𝐹𝑓 ⋅ 𝐹𝑓 ′ = 𝐹𝑓 ⋅ 𝑔 = 1𝐹𝑦 = 𝐹1𝑦
that 𝑓 ⋅ 𝑓 ′ = 1𝑦 because the functor 𝐹 is faithful. We find in the same way
that also 𝑓 ′ ⋅ 𝑓 = 1𝑥 . This shows that 𝑓 is an isomorphism with inverse 𝑓 ′.

We have thus proven that the inverse of 𝐹𝑓 in𝖣 lifts uniquely to an inverse
of 𝑓 in 𝖢. This entails that 𝑓 is an isomorphism.

(ii)

That the two objects 𝐹𝑥 and 𝐹𝑦 in 𝖣 are isomorphic means that there exists
an isomorphism 𝑔 ∶ 𝐹𝑥 → 𝐹𝑦 in 𝖣. There exists a morphism 𝑓 ∶ 𝑥 → 𝑦
in 𝖢 with 𝑔 = 𝐹𝑓 because the functor 𝐹 is full. It follows from part (i) of this
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exercise that 𝑓 is again an isomorphism. The existence of this isomorphism
shows that the two objects 𝑥 and 𝑦 are isomorphic.

Exercise 1.5.v

Let 𝑃 be the partially ordered set consisting of the two natural numbers 0
and 1with the usual ordering 0 < 1. Let 𝑄 be the preordered set consisting of
two distinct elements 𝑥 and 𝑦 with both 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 . Let 𝖯 and 𝖰 be the
categories corresponding to 𝑃 and 𝑄 respectively. (The category 𝖯 is 𝟙, and
the category 𝖰 is 𝕀.)

The map

𝑃 ⟶ 𝑄 , 0 ⟼ 𝑥 , 1 ⟼ 𝑦
is isotone, and therefore describes a functor 𝐹 ∶ 𝖯 → 𝖰 . The functor 𝐹 is
faithful because there exist no two distinct parallel morphisms in 𝖯. (More
generally, every functor from a preordered set into any other category is faith-
ful.)

The unique arrow 0 → 1 in 𝖯 is not an isomorphism. But its image under 𝐹 ,
which is the unique arrow 𝑥 → 𝑦 in 𝖰 , is an isomorphism. The functor 𝐹
therefore doesn’t reflect isomorphisms.

Exercise 1.5.vi

(i)

We show the following result:

Proposition 1.F. Let 𝐹 ∶ 𝖢 → 𝖣 and 𝐺 ∶ 𝖣 → 𝖤 be two functors.

1. If both 𝐹 and 𝐺 are faithful, then their composite 𝐺𝐹 is again faithful.

2. If both 𝐹 and 𝐺 are full, then their composite 𝐺𝐹 is again full.

3. If both 𝐹 and 𝐺 are essentially surjective, then their composite 𝐺𝐹 is again
essentially surjective.

Proof. We observe for every two objects 𝑥 and 𝑦 in 𝖢 the following commu-
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tative diagram of sets and functions between these sets:

𝖢(𝑥, 𝑦) 𝖤(𝐺𝐹𝑥, 𝐺𝐹𝑦)

𝖣(𝐹𝑥, 𝐹𝑦)

𝐺𝐹

𝐹 𝐺

1. Let 𝑥 and 𝑦 be any two objects of 𝖢. The maps 𝐹 ∶ 𝖢(𝑥, 𝑦) → 𝖣(𝐹𝑥, 𝐹𝑦)
and 𝐺 ∶ 𝖣(𝐹𝑥, 𝐹𝑦) → 𝖤(𝐺𝐹𝑥, 𝐺𝐹𝑦) are both injective, whence their com-
posite 𝐺𝐹 ∶ 𝖢(𝑥, 𝑦) → 𝖤(𝐺𝐹𝑥, 𝐺𝐹𝑦) is again injective.

2. Let 𝑥 and 𝑦 be any two objects of 𝖢. The maps 𝐹 ∶ 𝖢(𝑥, 𝑦) → 𝖣(𝐹𝑥, 𝐹𝑦)
and 𝐺 ∶ 𝖣(𝐹𝑥, 𝐹𝑦) → 𝖤(𝐺𝐹𝑥, 𝐺𝐹𝑦) are both surjective, whence their com-
posite 𝐺𝐹 ∶ 𝖢(𝑥, 𝑦) → 𝖤(𝐺𝐹𝑥, 𝐺𝐹𝑦) is again surjective.

3. For every category 𝖷 we denote by Iso(𝖷) the collection of isomorphisms
classes of objects of 𝖷. Functors preserve isomorphisms, whence every
functor 𝐻 ∶ 𝖷 → 𝖸 induces a function Iso(𝐻)∶ Iso(𝖷) → Iso(𝖸) given
by Iso(𝐻)([𝑥]) = [𝐻𝑥].

In the given situation we have the following commutative diagram:

Iso(𝖢) Iso(𝖤)

Iso(𝖣)

Iso(𝐺𝐹)

Iso(𝐹) Iso(𝐺)

The functions Iso(𝐹) and Iso(𝐺) are both surjective by assumption. Their
composite Iso(𝐺) ∘ Iso(𝐹) = Iso(𝐺𝐹) is therefore again surjective. ∎

(ii)

According to Theorem 1.5.9 there exist functors 𝐹 ∶ 𝖢 → 𝖣 and 𝐺 ∶ 𝖣 → 𝖤
both of which are full, faithful, and essentially surjective. It follows from
Proposition 1.F that their composite 𝐺𝐹 ∶ 𝖢 → 𝖤 is again full, faithful, and
essentially surjective. Once again according to Theorem 1.5.9, this means
that 𝖢 and 𝖤 are equivalent.

We have thus proven that equivalence of categories is transitive.
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1.5 Equivalence of categories

Every category is equivalent to itself via its identity functor. Equivalence
of categories is therefore reflexive.

Two categories 𝖢 and 𝖣 are equivalent if and only if there exist func-
tors 𝐹 ∶ 𝖢 → 𝖣 and 𝐺 ∶ 𝖣 → 𝖢with 𝐺𝐹 ≅ 1𝖢 and 𝐹𝐺 ≅ 1𝖣. This formulation
is symmetric in 𝖢 and 𝖣, whence equivalence of categories is symmetric.

Exercise 1.5.vii
Let more specifically 𝑥 be an object of𝖦 and let 𝐺 be the automorphism group
of 𝑥 , i.e., the group Aut𝖢(𝑥). Let 𝐹 be the inclusion functor from 𝖡𝐺 to 𝖦,
given on objects by 𝐹∗ = 𝑥 and on morphisms by 𝐹𝑔 = 𝑔 for every 𝑔 ∈ 𝐺.

There exist for every object 𝑦 of 𝖦 an isomorphism 𝜑𝑦 ∶ 𝑥 → 𝑦 in 𝖦 be-
cause 𝖦 is a connected groupoid. We choose 𝜑𝑥 as 1𝑥 .

We define a functor 𝐹 ′ from𝖦 to 𝖡𝐺 as follows. On objects, we set 𝐹 ′𝑦 ≔ ∗
for every object 𝑦 of 𝖦 (the only possible choice). We define for every two
objects 𝑦 and 𝑧 in 𝖦 the action of 𝐹 ′ on the set 𝖦(𝑦, 𝑧) as the map

𝖦(𝑦, 𝑧)
𝜑−1𝑧 ∘(−)∘𝜑𝑦−−−−−−−−−−−→ 𝖦(𝑥, 𝑥) = 𝐺 = 𝖡𝐺(∗, ∗) = 𝖡𝐺(𝐹 ′𝑦, 𝐹 ′𝑧) .

In other words,
𝐹 ′𝑓 ≔ 𝜑−1𝑧 𝑓 𝜑𝑦

for every morphism 𝑓 ∶ 𝑦 → 𝑧 in𝖦. We need to check that the assignment 𝐹 ′
is indeed functorial:

• We have for every object 𝑦 of 𝖦 the sequence of equalities

𝐹 ′1𝑦 = 𝜑−1𝑦 1𝑦𝜑𝑦 = 𝜑−1𝑦 𝜑𝑦 = 1𝑥 = 1∗ = 1𝐹 ′𝑦 .

This shows that 𝐹 ′ preserves identity morphisms.

• We have for any two morphisms 𝑓1∶ 𝑦 → 𝑧 and 𝑓2∶ 𝑧 → 𝑤 in 𝖦 the
sequence of equalities

𝐹 ′𝑓2 ⋅ 𝐹 ′𝑓1 = 𝜑−1𝑤 𝑓2𝜑𝑧 ⋅ 𝜑−1𝑧 𝑓1𝜑𝑦 = 𝜑−1𝑤 𝑓2𝑓1𝜑𝑦 = 𝐹 ′(𝑓2𝑓1) .

This shows that 𝐹 ′ preserves composition of morphisms.

We have thus shown that the assignment 𝐹 ′ is functorial.
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The composite 𝐹 ′𝐹 is the identity functor on 𝖡𝐺: we have for the single
object ∗ of 𝖡𝐺 the sequence of equalities

𝐹 ′𝐹∗ = 𝐹 ′𝑥 = ∗ ,
and we have for every morphism 𝑔 ∶ ∗ → ∗ in 𝖡𝐺 the sequence of equalities

𝐹 ′𝐹𝑔 = 𝐹 ′𝑔 = 𝜑−1𝑥 𝑔𝜑𝑥 = 1−1𝑥 𝑔1𝑥 = 1𝑥𝑔1𝑥 = 𝑔 .
The composite 𝐹𝐹 ′ won’t be the identity functor on 𝖦 (unless 𝑥 is the only

object in 𝖦, in which case 𝐹 is an isomorphism with inverse 𝐹 ′), but it will be
isomorphic to this identity functor. We claim more specifically that the fam-
ily 𝜑 ≔ (𝜑𝑦 )𝑦 , where 𝑦 ranges over the objects of 𝖦, is a natural isomorphism
from 𝐹𝐹 ′ to 1𝖦.

We already know that 𝜑 is an isomorphism in each component, and that 𝜑𝑦
goes from 𝑥 = 𝐹𝐹 ′𝑦 to 𝑦 = 1𝖢𝑦 for every object 𝑦 of 𝖦. It therefore only
remains to check the naturality of 𝜑. To this end, we need to check that for
every morphism 𝑓 ∶ 𝑦 → 𝑧 in 𝖦 the following square diagram commutes:

𝐹𝐹 ′𝑦 𝐹𝐹 ′𝑧

𝑦 𝑧

𝐹𝐹 ′𝑓

𝜑𝑦 𝜑𝑧
𝑓

This diagram commutes because

𝜑𝑧 ⋅ 𝐹𝐹 ′𝑓 = 𝜑𝑧 ⋅ 𝐹 (𝜑−1𝑧 𝑓 𝜑𝑦 ) = 𝜑𝑧 ⋅ (𝜑−1𝑧 𝑓 𝜑𝑦 ) = 𝜑𝑧𝜑−1𝑧 𝑓 𝜑𝑦 = 𝑓 𝜑𝑦 .
We have altogether shown that 𝐹 ′ is an essential inverse to 𝐹 .

Exercise 1.5.viii
The author doesn’t know enough geometry for this exercise.

Exercise 1.5.ix
Let 𝖢 be a locally small category and let 𝖣 be a category equivalent to 𝖢.
This means that there exists an equivalence of categories 𝐹 from 𝖣 to 𝖢. The
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1.5 Equivalence of categories

functor 𝐹 is both full and faithful by Theorem 1.5.9, and therefore induces for
every two objects 𝑑 and 𝑑′ of 𝖣 the bijection

𝖣(𝑑, 𝑑′) 𝐹−−−−→ 𝖢(𝐹𝑑, 𝐹𝑑′) .
We know that 𝖢(𝐹𝑑, 𝐹𝑑′) is a set because the category 𝖢 is locally small. Con-
sequently, 𝖣(𝑑, 𝑑′) is also a set.

Exercise 1.5.x
Let 𝖣 be a discrete category and let 𝖢 be a category that is equivalent to 𝖣.
More explicitly, let 𝐹 ∶ 𝖣 → 𝖢 be an equivalence of categories.

The category𝖣 is in particular a groupoid. The category𝖢 is therefore also
a groupoid, since by Exercise 1.5.iv the equivalence 𝐹 reflect isomorphisms.

We have for every two objects 𝑑 and 𝑑′ of 𝖣 the induced bijection

𝖣(𝑑, 𝑑′) 𝐹−−−−→ 𝖢(𝐹𝑑, 𝐹𝑑′) .
We know that the set 𝖢(𝑐, 𝑐′) contains at most one element for every two
objects 𝑐 and 𝑐′ of 𝖢. Consequently, 𝖣(𝑑, 𝑑′) consists of at most one element.
This entails that for every object 𝑑 of 𝖣, the automorphism group of 𝑑 is
trivial.

From these observations and fromExercise 1.5.vii, we altogether find that𝖣
is the disjoint union of its connected components, each of which is equivalent
to 𝖡1.3 (In terms of graphs one might picture each connected component as
a complete graph. An edge in this graph represents a mutually inverse pair
of non-identity isomorphisms.)

Exercise 1.5.xi
The forgetful functor 𝖠𝖻 → 𝖦𝗋𝗈𝗎𝗉
Let 𝐹 be the inclusion functor from 𝖠𝖻 to 𝖦𝗋𝗈𝗎𝗉.

The functor 𝐹 is full and faithful because 𝖠𝖻 is a full subcategory of 𝖦𝗋𝗈𝗎𝗉.
The functor 𝐹 is not essentially surjective because no non-abelian group is
isomorphic to an abelian group. (And non-abelian groups do, in fact, exist.)

We see in particular that 𝐹 is not an equivalence of categories.

3Where 1 denotes the trivial group.
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The forgetful functor 𝖱𝗂𝗇𝗀 → 𝖠𝖻
Let 𝐹 be the forgetful functor from 𝖱𝗂𝗇𝗀 to 𝖠𝖻.

The functor 𝐹 is faithful. But it is not full because not every additive map
between rings is a homomorphism of rings, as not every additive map be-
tween rings is multiplicative.

The functor 𝐹 is not essentially surjective because not every abelian group
can be endowed with the structure of a unitary ring. Consider, for exam-
ple, the abelian group 𝐴 ≔ ℚ/ℤ. A ring structure on 𝐴 would consist of a
multiplication map

𝐴 ⊗ℤ 𝐴 ⟶ 𝐴 , 𝑎 ⊗ 𝑏 ⟼ 𝑎𝑏 .
But the group 𝐴 ⊗ℤ 𝐴 is trivial. The only ℤ-bilinear multiplication on 𝐴 is
therefore the zero multiplication, which is non-unital.

We find in particular that the functor 𝐹 is not an equivalence of categories.

The functor (−)×∶ 𝖱𝗂𝗇𝗀 → 𝖦𝗋𝗈𝗎𝗉
Let 𝐹 be the functor (−)×∶ 𝖱𝗂𝗇𝗀 → 𝖦𝗋𝗈𝗎𝗉 that assigns to each ring its group
of invertible elements (also known as its group of units).

The functor 𝐹 is not faithful. To see this, let 𝑅 be an integral domain, let 𝑎
and 𝑏 be two distinct elements of 𝑅, and let 𝜑, 𝜓 ∶ 𝑅[𝑥] → 𝑅 be the two evalua-
tion homomorphisms determined by 𝜑(𝑥) = 𝑎 and 𝜓(𝑥) = 𝑏. The group 𝑅[𝑥]×
is simply 𝑅× because 𝑅 is an integral domain, and both 𝜑 and 𝜓 induce the
identity homomorphism on 𝑅×.

The functor 𝐹 is also not full: while there exists no homomorphism of
rings from 𝔽3 to 𝔽5, there nevertheless exists a homomorphism of groups
from 𝔽×3 ≅ ℤ/2 to 𝔽×5 ≅ ℤ/4; even a non-trivial one.

Regarding the essential surjectivity of 𝐹 , we need to examine if every group
can occur as the group of units of some ring. This is not the case, as explained
in [MSE19].

The functor 𝐹 is in particular not an equivalence of categories.

The forgetful functor 𝖱𝗂𝗇𝗀 → 𝖱𝗇𝗀
Let 𝐹 be the forgetful functor from 𝖱𝗂𝗇𝗀 to 𝖱𝗇𝗀.

The functor 𝐹 is faithful because 𝖱𝗂𝗇𝗀 is a subcategory of 𝖱𝗇𝗀. The func-
tor 𝐹 is not full because there exists a homomorphism from the zero ring toℤ
in 𝖱𝗇𝗀, but not in 𝖱𝗂𝗇𝗀.
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The functor 𝐹 is also not essentially surjective, because no non-unitary ring
is isomorphic to a unitary ring.

The forgetful functor 𝖥𝗂𝖾𝗅𝖽 → 𝖱𝗂𝗇𝗀
Let 𝐹 be the forgetful functor from 𝖥𝗂𝖾𝗅𝖽 to 𝖱𝗂𝗇𝗀.

The functor 𝐹 is full and faithful because 𝖥𝗂𝖾𝗅𝖽 is a full subcategory of 𝖱𝗂𝗇𝗀.
The functor 𝐹 is not essentially surjective because every non-field ring, e.g.,ℤ,
is not isomorphic to a field.

The forgetful functor 𝖬𝗈𝖽𝑅 → 𝖠𝖻
Let 𝐹 be the forgetful functor from 𝖬𝗈𝖽𝑅 to 𝖠𝖻.

The functor 𝐹 is faithful for every ring 𝑅. Whether the functor 𝐹 is full
depends on the ring 𝑅:

• The functor 𝐹 will typically not be full, because an additive map be-
tween 𝑅-modules is not necessarily 𝑅-linear.

• If 𝑅 is either a quotient or localization of ℤ, then every additive map
between 𝑅-modules is already 𝑅-linear.

• Suppose more generally that the unique homomorphism of rings fromℤ
to 𝑅 is an epimorphism.

It then follows that the two canonical homomorphisms of rings from 𝑅
to 𝑅 ⊗ℤ 𝑅 are equal, since they are equal after pre-composition with the
homomorphism ℤ → 𝑅. In other words, 𝑟 ⊗ 1 = 1 ⊗ 𝑟 in 𝑅 ⊗ℤ 𝑅 for
every 𝑟 ∈ 𝑅.

Let now𝑀 and 𝑁 be two 𝑅-modules and let 𝑓 ∶ 𝑀 → 𝑁 be an additive
map. For 𝑚 ∈ 𝑀 we can then consider the auxiliary map

ℎ∶ 𝑅 ⊗ℤ 𝑅 ⟶ 𝑁 , 𝑟1 ⊗ 𝑟2 ⟼ 𝑟1𝑓 (𝑟2𝑚)
because 𝑓 is additive. We find that

𝑟𝑓 (𝑚) = ℎ(𝑟 ⊗ 1) = ℎ(1 ⊗ 𝑟) = 𝑓 (𝑟𝑚)
for every 𝑟 ∈ 𝑅. This shows that the map 𝑓 is already 𝑅-linear.

Our argumentation is essentially taken from [MSE18a]. A ring for
which the unique homomorphism of rings ℤ → 𝑅 is an epimorphism
is called solid. More information and references about solid rings can be
found at [MSE21].
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The functor 𝐹 is essentially surjective if and only if each abelian group can
be endowed with an 𝑅-module structure. This is the case if and only if the
unique homomorphism rings fromℤ to 𝑅 splits, i.e., if and only if there exists
a homomorphism of rings from 𝑅 to ℤ:

• Suppose that such a homomorphism of rings 𝜑 ∶ 𝑅 → ℤ exists. For every
abelian group 𝐴 we can then pull back the unique ℤ-module structure
on 𝐴 along 𝜑 to an 𝑅-module structure on 𝐴.

• Suppose conversely that every abelian group𝐴 can be endowed with the
structure of an 𝑅-module. This means that we have for every abelian
group 𝐴 a homomorphism of rings from 𝑅 to Endℤ(𝐴). For 𝐴 = ℤ we
have Endℤ(𝐴) = ℤ, and therefore a homomorphism of rings from 𝑅 toℤ.

Moreover, there exists a homomorphism of rings from 𝑅 to ℤ if and only
if the ring 𝑅 is of the form 𝑅 ≅ 𝑅′ ⋊ℤ for some possibly non-unitary ring 𝑅′.
That is, if and only if 𝑅 is the unitalization of 𝑅′.

The functor 𝐹 typically won’t be an equivalence.

1.6 The art of the diagram chase

Exercise 1.6.i
Let 𝖢 be a category, let 𝑖 be an initial object in 𝖢, let 𝑡 be a terminal object
in 𝖢, and let 𝑓 be a morphism from 𝑡 to 𝑖.

There exists a unique morphism 𝑔 from 𝑖 to 𝑡 because 𝑖 is initial in 𝖢 (and
also because 𝑡 is terminal in 𝖢). The composite 𝑓 𝑔 is a morphism from 𝑖
to 𝑖, and there exists only one such morphism in 𝖢 because 𝑖 is initial. The
identity morphism 1𝑖 is also a morphism from 𝑖 to 𝑖, so by uniqueness we
must have 𝑓 𝑔 = 1𝑖. By using that 𝑡 is terminal in 𝖢, we can similarly see
that 𝑔𝑓 = 1𝑡 .

This shows that 𝑓 is an isomorphism with inverse 𝑔.

Exercise 1.6.ii
Let 𝖢 be a category and let 𝑡 and 𝑡′ be two terminal objects in 𝖢. There exists
a unique morphism 𝑓 from 𝑡 to 𝑡′ in 𝖢 because 𝑡′ is terminal in 𝖢. We can see
in at least two ways that 𝑓 is an isomorphism:
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First argumentation

There exists a morphism 𝑔 from 𝑡′ to 𝑡 in 𝖢 because 𝑡 is terminal in 𝖢. The
composite 𝑔𝑓 is a morphism from 𝑡 to 𝑡 , and 1𝑡 is also a morphism from 𝑡 to 𝑡 .
But we know that there exists only one morphism from 𝑡 to 𝑡 because 𝑡 is
terminal in 𝖢. We hence find that 𝑔𝑓 = 1𝑡 . We can see in the same way that
also 𝑓 𝑔 = 1𝑡′ . This then tells us that 𝑓 is an isomorphism with inverse 𝑔.

Second argumentation

We observe that the induced map 𝑓∗∶ 𝖢(𝑐, 𝑡) → 𝖢(𝑐, 𝑡′) is bijective for ev-
ery object 𝑐 of 𝖢 because the sets 𝖢(𝑐, 𝑡) and 𝖢(𝑐, 𝑡′) are both singletons. By
Lemma 1.2,3, the morphism 𝑓 is an isomorphism.

Exercise 1.6.iii

Let 𝐹 ∶ 𝖢 → 𝖣 be a faithful functor. Let 𝑓 ∶ 𝑥 → 𝑦 be a morphism in 𝖢 for
which the induced morphism 𝐹𝑓 ∶ 𝐹𝑥 → 𝐹𝑦 in 𝖣 is a monomorphism.

Faithful functors reflect monomorphisms, first solution

Let 𝑔1, 𝑔2∶ 𝑤 → 𝑥 be two morphisms in 𝖢 with 𝑓 𝑔1 = 𝑓 𝑔2. Then also

𝐹𝑓 ⋅ 𝐹𝑔1 = 𝐹(𝑓 𝑔1) = 𝐹(𝑓 𝑔2) = 𝐹𝑓 ⋅ 𝐹𝑔2 ,

and thus 𝐹𝑔1 = 𝐹𝑔2 because 𝐹𝑓 is a monomorphism. It then further follows
that 𝑔1 = 𝑔2 because the functor 𝐹 is faithful.

Faithful functors reflect monomorphisms, second solution

We have for every object 𝑐 of 𝖢 the following commutative square diagram:

𝖢(𝑐, 𝑥) 𝖢(𝑐, 𝑦)

𝖣(𝐹𝑐, 𝐹𝑥) 𝖣(𝐹𝑐, 𝐹𝑦)

𝑓∗

𝐹 𝐹
(𝐹𝑓 )∗
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In this diagram, both vertical arrows are injective because the functor 𝐹 is
faithful, and the lower horizontal arrow is injective because 𝐹𝑓 is a monomor-
phism. It follows from the commutativity of the diagram that the composite

𝖢(𝑐, 𝑥) 𝑓∗−−−−→ 𝖢(𝑐, 𝑦) 𝐹−−−−→ 𝖣(𝐹𝑐, 𝐹𝑦)

is injective, which entails that the map 𝑓∗∶ 𝖢(𝑐, 𝑥) → 𝖢(𝑐, 𝑦) is injective. As
this holds for every object 𝑐 of 𝖢, this shows that 𝑓 is a monomorphism.

Faithful functors reflect epimorphisms

The covariant functor 𝐹 ∶ 𝖢 → 𝖣 is also a covariant functor from 𝖢op to 𝖣op,
and still faithful. We thus have for every morphism 𝑓 in 𝖢 the logical steps

𝐹𝑓 is an epimorphism in 𝖣
⟺ 𝐹𝑓 is a monomorphism in 𝖣op

⟹ 𝑓 is a monomorphism in 𝖢op

⟺ 𝑓 is an epimorphism in 𝖢 .

Monomorphisms and epimorphisms in concrete categories

Let 𝖢 be a concrete category with forgetful functor 𝑈 ∶ 𝖢 → 𝖲𝖾𝗍. We have
for every morphism 𝑓 in 𝖢 the logical steps

𝑈 𝑓 is injective
⟺ 𝑈𝑓 is a monomorphism in 𝖲𝖾𝗍
⟹ 𝑓 is a monomorphism in 𝖢 ,

as well as the logical steps

𝑈 𝑓 is surjective
⟺ 𝑈𝑓 is an epimorphism in 𝖲𝖾𝗍
⟹ 𝑓 is an epimorphism in 𝖢 ,

because the functor 𝑈 is faithful.
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Exercise 1.6.iv
Let 𝑓 ∶ 𝑥 → 𝑦 be a morphism in a category 𝖢 that is not a monomorphism,
and whose domain 𝑥 and codomain 𝑦 are distinct. Let 𝖢′ be the subcate-
gory of 𝖢 consisting of the two objects 𝑥 and 𝑦 , their identity morphisms 1𝑥
and 1𝑦 , and the morphism 𝑓 . The inclusion functor 𝑈 from 𝖢′ to 𝖢 is faithful,
because 𝖢′ is a subcategory of 𝖢, and the morphism 𝑓 is a monomorphism
in 𝖢′. But 𝑈 𝑓 is not a monomorphism in 𝖢 by choice of 𝑓 .

To see that faithful functors need not preserve epimorphisms we can con-
sider the inclusion functor from (𝖢′)op to 𝖢op.

Exercise 1.6.v
We can adapt our argumentation from the previous exercise.

A non-injective monomorphism

We can consider the non-injective map

𝑓 ∶ {1, 2} ⟶ ∗ ,
and the subcategory of 𝖲𝖾𝗍 whose objects are the two sets {∗} and {1, 2} and
whose morphisms are 1{∗}, 1{1,2} and 𝑓 .

A non-surjective epimorphism

We can similarly consider the non-surjective function

𝑔 ∶ {∗} ⟶ {1, 2} , ∗ ⟼ 1 ,
and the subcategory of 𝖲𝖾𝗍 whose objects are the two sets {∗} and {1, 2} and
whose morphisms are 1{∗}, 1{1,2} and 𝑔.

Exercise 1.6.vi
We denote the category of (𝖢, 𝑇 )-coalgebras by 𝖢𝗈𝖠𝗅𝗀(𝖢, 𝑇 ). Every mor-
phism in 𝖢𝗈𝖠𝗅𝗀(𝖢, 𝑇 ) is also a morphism in 𝖢. The composition of mor-
phisms in 𝖢𝗈𝖠𝗅𝗀(𝖢, 𝑇 ) is the composition of morphisms in 𝖢. For every coal-
gebra (𝑐, 𝛾 ), the identity morphism of (𝑐, 𝛾 ) in 𝖢𝗈𝖠𝗅𝗀(𝖢, 𝑇 ) is the identity mor-
phism of 𝑐 in 𝖢, i.e., 1(𝑐,𝛾 ) = 1𝑐 .
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We first observe that every coalgebra (𝑐, 𝛾 ) gives rise to another coalge-
bra, namely (𝑇 𝑐, 𝑇 𝛾 ). Moreover, 𝛾 is a morphism of coalgebras from (𝑐, 𝛾 )
to (𝑇 𝑐, 𝑇 𝛾 ) by the commutativity of the following diagram:

𝑐 𝑇 𝑐

𝑇 𝑐 𝑇 2𝑐

𝛾

𝛾 𝑇 𝛾
𝑇 𝛾

Suppose now that (𝑐, 𝛾 ) is a terminal coalgebra, i.e., a terminal object in the
category𝖢𝗈𝖠𝗅𝗀(𝖢, 𝑇 ). We know that 𝛾 is a morphism of coalgebras from (𝑐, 𝛾 )
to (𝑇 𝑐, 𝑇 𝛾 ). We also know that there exists a (unique) morphism of coalgebras

𝛿 ∶ (𝑇 𝑐, 𝑇 𝛾 ) ⟶ (𝑐, 𝛾 )
because the coalgebra (𝑐, 𝛾 ) is terminal. This means that 𝛿 is a morphism
from 𝑇 𝑐 to 𝑐 in 𝖢, so that the following diagram commutes:

𝑇 𝑐 𝑐

𝑇 2𝑐 𝑇 𝑐

𝛿

𝑇 𝛾 𝛾

𝑇 𝛿

(1.4)

The composite 𝛿𝛾 is a morphism of coalgebras from (𝑐, 𝛾 ) to itself. As (𝑐, 𝛾 )
is terminal, this morphism must be the identity morphism of (𝑐, 𝛾 ). There-
fore, 𝛿𝛾 = 1(𝑐,𝛾 ) = 1𝑐 . It further follows from the commutativity of the dia-
gram (1.4) that

𝛾𝛿 = 𝑇𝛿 ⋅ 𝑇 𝛾 = 𝑇 (𝛿𝛾 ) = 𝑇1𝑐 = 1𝑇 𝑐 = 1(𝑇 𝑐,𝑇 𝛾 ) .
This shows that 𝛾 and 𝛿 are mutually inverse isomorphisms of coalgebras.

1.7 The 2-category of categories

Exercise 1.7.i
Let 𝖢 be a small category and let 𝖣 be a locally small category. Let 𝐹 and 𝐺
be two functors from 𝖢 to 𝖣, and let Nat(𝐹 , 𝐺) be the collection of natural
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transformations from 𝐹 to 𝐺. The map

Nat(𝐹 , 𝐺) ⟶ ∏
𝑐∈𝖢

𝖣(𝐹𝑐, 𝐺𝑐) , 𝛼 ⟼ (𝛼𝑐)𝑐

is injective, and its codomain is a small product of sets, and therefore again a
set. It follows that the collection Nat(𝐹 , 𝐺) is also a set.

Exercise 1.7.ii
Let 𝑓 ∶ 𝑥 → 𝑦 be a morphism in 𝖢. The morphism 𝑓 in 𝖢 induces the mor-
phism

𝐹𝑓 ∶ 𝐹𝑥 ⟶ 𝐹𝑦
in 𝖣. It follows from the naturality of 𝛽 that the resulting square diagram

𝐻𝐹𝑥 𝐻𝐹𝑦

𝐾𝐹𝑥 𝐾𝐹𝑦

𝐻𝐹𝑓

𝛽𝐹𝑥 𝛽𝐹𝑦
𝐾𝐹𝑓

in 𝖤 commutes. By applying the functor 𝐿 to this diagram, we get the com-
mutative square diagram

𝐿𝐻𝐹𝑥 𝐿𝐻𝐹𝑦

𝐿𝐾𝐹𝑥 𝐿𝐾𝐹𝑦

𝐿𝐻𝐹𝑓

𝐿𝛽𝐹𝑥 𝐿𝛽𝐹𝑦
𝐿𝐾𝐹𝑓

in 𝖥. We have 𝐿𝛽𝐹𝑥 = (𝐿𝛽𝐹)𝑥 and similarly 𝐿𝛽𝐹𝑦 = (𝐿𝛽𝐹)𝑦 , and can therefore
rewrite this commutative square diagram as follows:

𝐿𝐻𝐹𝑥 𝐿𝐻𝐹𝑦

𝐿𝐾𝐹𝑥 𝐿𝐾𝐹𝑦

𝐿𝐻𝐹𝑓

(𝐿𝛽𝐹)𝑥 (𝐿𝛽𝐹)𝑦
𝐿𝐾𝐹𝑓

That this diagram commutes for every morphism 𝑓 ∶ 𝑥 → 𝑦 in 𝖢 means
precisely that the family 𝐿𝛽𝐹 = (𝐿𝛽𝑐𝐹)𝑐 is a natural transformation from 𝐿𝐻𝐹
to 𝐿𝐾𝐹 .
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Exercise 1.7.iii
Consider the following diagram of functors and natural transformations:

𝖢 𝖣 𝖤
𝐹

𝐺

𝛼

𝐻

𝐾

𝛽 (1.5)

The vertical composite of 𝛼 and 𝛽 was originally defined componentwise as
the diagonal morphism in the following commutative diagram:

𝐻𝐹𝑐 𝐾𝐹𝑐

𝐻𝐺𝑐 𝐾𝐺𝑐

𝛽𝐹𝑐

(𝛽∗𝑎)𝑐𝐻𝛼𝑐 𝐾𝛼𝑐

𝛽𝐺𝑐

We also know that the horizontal and vertical composition satisfy the inter-
change rule

(𝛿 ⋅ 𝛾 ) ∗ (𝛽 ⋅ 𝛼) = (𝛿 ∗ 𝛽) ⋅ (𝛾 ∗ 𝛼)
whenever we are in the following situation:

𝖢 𝖣 𝖤

𝐹

𝐺

𝐻

𝛼

𝛽

𝐽

𝐾

𝐿

𝛾

𝛿

We have also seen that from the horizontal composition of natural transfor-
mation we can derive the whiskering of natural transformations: in the situ-
ations

𝖢 𝖣 𝖤
𝐹

𝐺

𝛼 𝐻 and 𝖢 𝖣 𝖤𝐹
𝐻

𝐾

𝛽
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we have the induced diagrams

𝖢 𝖣 𝖤
𝐹

𝐺

𝛼

𝐻

𝐻

1𝐻 and 𝖢 𝖣 𝖤
𝐹

𝐹

1𝐹

𝐻

𝐾

𝛽

(1.6)
and therefore the natural transformations

𝐻𝛼 ≔ 1𝐻 ∗ 𝛼 and 𝛽𝐹 ≔ 𝛽 ∗ 1𝐹 .
However, we can also conversely express horizontal composition via verti-

cal composition and whiskering, as required by this exercise: in the situation
of the diagram (1.5) we have the sequence of equalities

𝛽 ∗ 𝛼 = (1𝐾 ⋅ 𝛽) ∗ (𝛼 ⋅ 1𝐹 ) = (1𝐾 ∗ 𝛼) ⋅ (𝛽 ∗ 1𝐹 ) = 𝐾𝛼 ⋅ 𝛽𝐹 ,
as well as the sequence of equalities

𝛽 ∗ 𝛼 = (𝛽 ⋅ 1𝐻 ) ∗ (1𝐺 ⋅ 𝛼) = (𝛽 ∗ 1𝐺) ⋅ (1𝐻 ∗ 𝛼) = 𝛽𝐺 ⋅ 𝐻𝛼 .
These equations give us two ways of expressing horizontal composition via
vertical composition and whiskering.

We can express the overall situation by the following commutative diagram
of natural transformations:

𝐻𝐹 𝐻𝐺

𝐾𝐹 𝐾𝐺

𝐻𝛼

𝛽𝐹 𝛽∗𝛼 𝛽𝐺

𝐾𝛼

Exercise 1.7.iv
Lemma 1.G (Whiskering and vertical composition I). In the situation

𝖢 𝖣 𝖤 𝖥𝐹

𝐺

𝐻

𝐽

𝛼

𝛽
𝐾
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we have the identity
𝐾(𝛽 ⋅ 𝛼)𝐹 = 𝐾𝛽𝐹 ⋅ 𝐾𝛼𝐹 .

Proof. We have for every object 𝑐 of 𝖢 the sequence of equalities

(𝐾(𝛽 ⋅ 𝛼)𝐹)𝑐 = 𝐾(𝛽 ⋅ 𝛼)𝐹𝑐
= 𝐾(𝛽𝐹𝑐 ⋅ 𝛼𝐹𝑐)
= 𝐾𝛽𝐹𝑐 ⋅ 𝐾𝛼𝐹𝑐
= (𝐾𝛽𝐹)𝑐 ⋅ (𝐾𝛼𝐹)𝑐
= (𝐾𝛽𝐹 ⋅ 𝐾𝛼𝐹)𝑐 ,

and therefore altogether the equality 𝐾(𝛽 ⋅ 𝛼)𝐹 = 𝐾𝛽𝐹 ⋅ 𝐾𝛼𝐹 . ∎

Corollary 1.H (Whiskering and vertical composition II). Let 𝖢, 𝖣 and 𝖤 be
three categories.

1. In the situation

𝖢 𝖣 𝖤

𝐹

𝐺

𝐻

𝛼

𝛽
𝐾

we have the equality 𝐾(𝛽 ⋅ 𝛼) = 𝐾𝛽 ⋅ 𝐾𝛼 .
2. In the situation

𝖢 𝖣 𝖤𝐹

𝐺

𝐻

𝐾

𝛼

𝛽

we have the equality (𝛽 ⋅ 𝛼)𝐹 = 𝛽𝐹 ⋅ 𝛼𝐹 . ∎

Proof.

1. We have 𝐾(𝛽 ⋅ 𝛼) = 𝐾(𝛽 ⋅ 𝛼)1𝖢 = 𝐾𝛽1𝖢 ⋅ 𝐾𝛼1𝖢 = 𝐾𝛽 ⋅ 𝐾𝛼 .
2. We have (𝛽 ⋅ 𝛼)𝐹 = 1𝖤(𝛽 ⋅ 𝛼)𝐹 = 1𝖤𝛽𝐹 ⋅ 1𝖤𝛼𝐹 = 𝛽𝐹 ⋅ 𝛼𝐹 . ∎
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We now return to the given situation:

𝖢 𝖣 𝖤

𝐹

𝐺

𝐻

𝛼

𝛽

𝐽

𝐾

𝐿

𝛾

𝛿

The diagram

𝐽𝐹 𝐾𝐹 𝐿𝐹

𝐽𝐺 𝐾𝐺 𝐿𝐺

𝐽𝐻 𝐾𝐻 𝐿𝐻

(𝛿⋅𝛾 )𝐹

𝛾𝐹

𝐽𝛼 𝛾∗𝛼

𝐽 (𝛽⋅𝛼)

𝛿𝐹

𝐾𝛼 𝛿∗𝛼 𝐿𝛼

𝐿(𝛽⋅𝛼)𝛾𝐺

𝐽𝛽 𝛾∗𝛽

𝛿𝐺

𝐾𝛽 𝛿∗𝛽 𝐿𝛽

𝛾𝐻

(𝛿⋅𝛾 )𝐻

𝛿𝐻

commutes by definition of the horizontal composition of natural transforma-
tions (the four inner squares) and by Corollary 1.H (the four outer parts). The
above diagram has the following subdiagram:

𝐽𝐹 𝐿𝐹

𝐽𝐻 𝐿𝐻

(𝛿⋅𝛾 )𝐹

(𝛿∗𝛽)⋅(𝛾∗𝛼)𝐽 (𝛽⋅𝛼) 𝐿(𝛽⋅𝛼)

(𝛿⋅𝛾 )𝐻

But the composite of the upper horizontal arrow and right-side vertical arrow
is given by

𝐿(𝛽 ⋅ 𝛼) ⋅ (𝛿 ⋅ 𝛾 )𝐹 = (𝛿 ⋅ 𝛾 ) ∗ (𝛽 ⋅ 𝛼) .
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(The same goes for the composite of the left-side vertical arrowwith the lower
horizontal arrow.) Consequently,

(𝛿 ∗ 𝛽) ⋅ (𝛾 ∗ 𝛼) = (𝛿 ⋅ 𝛾 ) ∗ (𝛽 ⋅ 𝛼) .

Exercise 1.7.v
Let 𝖣 be a category and let 𝑑 be an object of 𝖣. Let End(𝑑) denote the col-
lection of endomorphisms of 𝑑 in 𝖣. For every two such endomorphisms 𝑓
and 𝑔, their composite 𝑔𝑓 is again an endomorphism of 𝖣. The composition
of morphisms in 𝖣 therefore restricts to a binary operation on End(𝑑), mak-
ing End(𝑑) into a magma. As composition of morphism in 𝖣 is associative,
the restricted operation on End(𝑑) is again associative, upgrading End(𝑑) to
a semigroup. The identity morphism 1𝑑 acts as a neutral element in End(𝑑),
further upgrading End(𝑑) to a monoid.

Let now 𝖢 be a category and let 𝖣 be the functor category 𝖢𝖢. It follows
from the above argumentation that End𝖣(1𝖢) is a monoid under vertical com-
position of natural transformations. It follows from the upcoming proposi-
tion that End𝖣(1𝖢) is also a monoid under horizontal composition of natural
transformation. These two monoid structures on End𝖣(1𝖢) satisfy the in-
terchange property from Lemma 1.7.7. It follows from the Eckmann–Hilton
argument that both monoid structures agree and are commutative.

Lemma 1.I (Whiskering with identity functors). Let 𝐹 , 𝐺 ∶ 𝖢 → 𝖣 be two par-
allel functors and let 𝛼 ∶ 𝐹 ⇒ 𝐺 be a natural transformation. Then 𝛼1𝖢 = 𝛼
and 1𝖣𝛼 = 𝛼 .
Proof. For the first equality we observe that 𝛼1𝖢 is a natural transformation
from 𝐹1𝖢 to 𝐺1𝖢, and thus again a natural transformation from 𝐹 to 𝐺. We
also have

(𝛼1𝖢)𝑐 = 𝛼(1𝖢𝑐) = 𝛼𝑐
for every object 𝑐 of 𝖢, and thus overall 𝛼1𝖢 = 𝛼 .

For the second equality we observe that 1𝖣𝛼 is a natural transformation
from 1𝖣𝐹 to 1𝖣𝐺, and thus again a natural transformation from 𝐹 to 𝐺. We
also have

(1𝖣𝛼)𝑐 = 1𝖣𝛼𝑐 = 𝛼𝑐
for every object 𝑐 of 𝖢, and thus overall 1𝖣𝛼 = 𝛼 . ∎

56



1.7 The 2-category of categories

Lemma 1.J (Whiskering of the identity natural transformation). Let

𝐹 ∶ 𝖢 ⟶ 𝖣 and 𝐺 ∶ 𝖣 ⟶ 𝖢

be two functors. Then 𝐺1𝐹 = 1𝐺𝐹 and 1𝐺𝐹 = 1𝐺𝐹 .

Proof. We have for every object 𝑐 of 𝖢 the sequences of equalities

(𝐺1𝐹 )𝑐 = 𝐺(1𝐹 )𝑐 = 𝐺1𝐹𝑐 = 1𝐺𝐹𝑐 = (1𝐺𝐹 )𝑐
and

(1𝐺𝐹)𝑐 = (1𝐺)𝐹𝑐 = 1𝐺𝐹𝑐 = (1𝐺𝐹 )𝑐 ,
and thus altogether 𝐺1𝐹 = 1𝐺𝐹 and 1𝐺𝐹 = 1𝐺𝐹 . ∎

Proposition 1.K (Assocativity and units for horizontal composition).

1. In the situation

𝖢 𝖣 𝖤 𝖥
𝐹

𝐺

𝛼
𝐻

𝐽

𝛽
𝐾

𝐿

𝛾

we have the equality (𝛾 ∗ 𝛽) ∗ 𝛼 = 𝛾 ∗ (𝛽 ∗ 𝛼) of natural transformations
from 𝐾𝐻𝐹 to 𝐿𝐽𝐺.

2. We have for every natural transformation 𝛼 ∶ 𝐹 ⇒ 𝐺 between two func-
tors 𝐹 , 𝐺 ∶ 𝖢 → 𝖣 the equalities

𝛼 ∗ 11𝖢 = 𝛼 and 11𝖣 ∗ 𝛼 = 𝛼 .4

Proof. We prove both claims independently of one another.

1. The horizontal composition 𝛾∗𝛽 is a natural transformation from𝐾𝐻 to 𝐿𝐽 ,
and the horizontal composition 𝛽 ∗ 𝛼 is a natural transformation from 𝐻𝐹

4Here 11𝖢 denotes the identity natural transformation of the identity functor of 𝖢. Note
that 𝛼 ∗11𝖢 is a natural transformation from 𝐹1𝖢 = 𝐹 to 𝐺1𝖢 = 𝐺, and that similarly 11𝖣 ∗𝛼
is a natural transformation from 1𝖣𝐹 = 𝐹 to 1𝖣𝐺 = 𝐺.
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to 𝐽𝐺. We have therefore the sequences of equalities

(𝛾 ∗ 𝛽) ∗ 𝛼 = (𝛾 ∗ 𝛽) codom(𝛼) ⋅ dom(𝛾 ∗ 𝛽)𝛼
= (𝛾 ∗ 𝛽) codom(𝛼) ⋅ dom(𝛾) dom(𝛽)𝛼
= (𝛾 ∗ 𝛽)𝐺 ⋅ 𝐾𝐻𝛼
= (𝛾 codom(𝛽) ⋅ dom(𝛾)𝛽)𝐺 ⋅ 𝐾𝐻𝛼
= (𝛾𝐽 ⋅ 𝐾𝛽)𝐺 ⋅ 𝐾𝐻𝛼
= 𝛾𝐽𝐺 ⋅ 𝐾𝛽𝐺 ⋅ 𝐾𝐻𝛼

and similarly

𝛾 ∗ (𝛽 ∗ 𝛼) = 𝛾 codom(𝛽 ∗ 𝛼) ⋅ dom(𝛾)(𝛽 ∗ 𝛼)
= 𝛾 codom(𝛽) codom(𝛼) ⋅ dom(𝛾)(𝛽 ∗ 𝛼)
= 𝛾𝐽𝐺 ⋅ 𝐾(𝛽 ∗ 𝛼)
= 𝛾𝐽𝐺 ⋅ 𝐾(𝛽 codom(𝛼) ⋅ dom(𝛽)𝛼)
= 𝛾𝐽𝐺 ⋅ 𝐾(𝛽𝐺 ⋅ 𝐻𝛼)
= 𝛾𝐽𝐺 ⋅ 𝐾𝛽𝐺 ⋅ 𝐾𝐻𝛼 ,

by Corollary 1.H.5

2. It follows from Lemma 1.I and Lemma 1.J that

𝛼 ∗ 11𝖢 = 𝛼 codom(11𝖢) ⋅ dom(𝛼)11𝖢
= 𝛼1𝖢 ⋅ 𝐹11𝖢
= 𝛼 ⋅ 1𝐹1𝖢
= 𝛼 ⋅ 1𝐹
= 𝛼

5More generally, given functors 𝐹𝑖, 𝐺𝑖 ∶ 𝖢𝑖 → 𝖢𝑖+1 and natural transformations 𝛼𝑖 ∶ 𝐹𝑖 → 𝐺𝑖
for 𝑖 = 1, … , 𝑛, we have the identity

𝛼𝑛 ∗ ⋯ ∗ 𝛼1 = (𝛼𝑛𝐺𝑛−1𝐺𝑛−2 ⋯𝐺1) ⋅ ⋯ ⋅ (𝐹𝑛 ⋯𝐹3𝛼2𝐺1) ⋅ (𝐹𝑛 ⋯𝐹3𝐹2𝛼1) .
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and

11𝖣 ∗ 𝛼 = 11𝖣 codom(𝛼) ⋅ dom(11𝖣)𝛼
= 11𝖣𝐺 ⋅ 1𝖣𝛼
= 11𝖣𝐺 ⋅ 𝛼
= 1𝐺 ⋅ 𝛼
= 𝛼 .

This shows the claimed equalities. ∎

Exercise 1.7.vi

Lemma 1.L. Suppose that in the situation

𝖢 𝖣 𝖤 𝖥𝐹
𝐺

𝐻

𝛼 𝐽

the natural transformation 𝛼 is an isomorphism. Then the whiskered natural
transformation 𝐽𝛼𝐹 is again an isomorphism.

Proof. The component (𝐽𝛼𝐹)𝑐 = 𝐽𝛼𝐹𝑐 is an isomorphism for every object 𝑐
of 𝖢 because each component of 𝛼 is an isomorphism and because the func-
tor 𝐽 preserves isomorphisms. ∎

The composites

1𝖢
𝜂−−−→ 𝐺𝐹 = 𝐺1𝖣𝐹

𝐺𝜂′𝐹−−−−−−→ 𝐺𝐺′𝐹 ′𝐹

and

𝐹 ′𝐹𝐺𝐺′ 𝐹 ′𝜀𝐺′
−−−−−−−→ 𝐹 ′1𝖣𝐺′ = 𝐹 ′𝐺′ 𝜀′−−−−→ 1𝖤

are again natural isomorphisms thanks to Lemma 1.L.
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Exercise 1.7.vii

From a bifunctor 𝖢 × 𝖣 → 𝖤 to functor 𝖢 → 𝖤𝖣

Let 𝐹 ∶ 𝖢 × 𝖣 → 𝖤 be a bifunctor.
We have for every object 𝑐 of 𝖢 the associated inclusion functor

𝐼𝑐 ∶ 𝖣 ⟶ 𝖢 × 𝖣 , 𝑑 ⟼ (𝑐, 𝑑) , 𝑔 ⟼ (1𝑐 , 𝑔) .

The composite 𝐹 𝐼𝑐 is again a functor. This composite is precisely 𝐹(𝑐, −),
whence we have found that 𝐹(𝑐, −) is indeed a functor. It is given on objects
by

𝐹(𝑐, −)(𝑑) = 𝐹(𝑐, 𝑑) ,
and on morphisms by

𝐹(𝑐, −)(𝑔) = 𝐹(1𝑐 , 𝑔) .
To describe how 𝐹(𝑐, −) depends on 𝖢, let 𝑓 ∶ 𝑐 → 𝑐′ be a morphism in 𝖢.

We have for every morphism 𝑔 ∶ 𝑑 → 𝑑′ in 𝖣 the following commutative
square diagram in 𝖢 × 𝖣:

(𝑐, 𝑑) (𝑐, 𝑑′)

(𝑐′, 𝑑) (𝑐′, 𝑑′)

(1𝑐 ,𝑔)

(𝑓 ,1𝑑 )
(𝑓 ,𝑔) (𝑓 ,1𝑑′)

(1𝑐′ ,𝑔)

By applying the functor 𝐹 to this commutative square diagram, we arrive at
the following commutative square diagram in 𝖤:

𝐹(𝑐, 𝑑) 𝐹(𝑐, 𝑑′)

𝐹 (𝑐′, 𝑑) 𝐹 (𝑐′, 𝑑′)

𝐹(1𝑐 ,𝑔)

𝐹 (𝑓 ,1𝑑 ) 𝐹 (𝑓 ,1𝑑′)

𝐹 (1𝑐′ ,𝑔)

Denoting 𝐹(𝑓 , 1𝑑) as 𝐹(𝑓 , −)𝑑 , we can rewrite this commutative diagram as
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follows:

𝐹(𝑐, −)(𝑑) 𝐹(𝑐, −)(𝑑′)

𝐹 (𝑐′, −)(𝑑) 𝐹(𝑐′, −)(𝑑′)

𝐹(𝑐,−)(𝑔)

𝐹(𝑓 ,−)𝑑 𝐹(𝑓 ,−)𝑑′

𝐹(𝑐′,−)(𝑔)

The commutativity of this square diagram tells us that the family

𝐹(𝑓 , −) ≔ (𝐹(𝑓 , −)𝑑)𝑑∈𝖣
is a natural transformation from the functor 𝐹(𝑐, −) to the functor 𝐹(𝑐′, −).

It remains to show that 𝐹(𝑓 , −) is functorial in 𝑓 . More precisely, we need
to show that

𝐹(1𝑐 , −) = 1𝐹(𝑐,−)
for every object 𝑐 of 𝖢, and that

𝐹(𝑓 ′𝑓 , −) = 𝐹(𝑓 ′, −) ⋅ 𝐹 (𝑓 , −)

for all composable morphisms 𝑓 ∶ 𝑐 → 𝑐′ and 𝑓 ′∶ 𝑐′ → 𝑐″ in 𝖢. The first
equality holds true because

𝐹(1𝑐 , −)𝑑 = 𝐹(1𝑐 , 1𝑑) = 𝐹1(𝑐,𝑑) = 1𝐹(𝑐,𝑑) = 1𝐹(𝑐,−)(𝑑) = (1𝐹(𝑐,−))𝑑
for every object 𝑑 of 𝖣. The second equality holds true because

𝐹(𝑓 ′𝑓 , −)𝑑 = 𝐹(𝑓 ′𝑓 , 1𝑑)
= 𝐹(𝑓 ′𝑓 , 1𝑑1𝑑)
= 𝐹((𝑓 ′, 1𝑑) ⋅ (𝑓 , 1𝑑))
= 𝐹(𝑓 ′, 1𝑑) ⋅ 𝐹 (𝑓 , 1𝑑)
= 𝐹(𝑓 ′, −)𝑑 ⋅ 𝐹 (𝑓 , −)𝑑
= (𝐹(𝑓 ′, −) ⋅ 𝐹 (𝑓 , −))𝑑

for every object 𝑑 of 𝖣.
We have overall shown that a bifunctor 𝐹 ∶ 𝖢 × 𝖣 → 𝖤 results in a func-

tor 𝐹 ′∶ 𝖢 → 𝖤𝖣 given on objects by 𝐹 ′(𝑐) = 𝐹(𝑐, −) and on morphisms
by 𝐹 ′(𝑓 ) = 𝐹(𝑓 , −).
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From a functor 𝖢 → 𝖤𝖣 to a bifunctor 𝖢 × 𝖣 → 𝖤
Let now 𝐺 be a functor from 𝖢 to 𝖤𝖣.

For every object (𝑐, 𝑑) of 𝖢 × 𝖣 let

𝐺′(𝑐, 𝑑) ≔ 𝐺(𝑐)(𝑑) .

We have for every morphism (𝑓 , 𝑔)∶ (𝑐, 𝑑) → (𝑐′, 𝑑′) in 𝖢 × 𝖣 the induced
natural transformation 𝐺(𝑓 )∶ 𝐺(𝑐) ⇒ 𝐺(𝑐′), and hence the following com-
mutative square diagram:

𝐺(𝑐)(𝑑) 𝐺(𝑐)(𝑑′)

𝐺(𝑐′)(𝑑) 𝐺(𝑐′)(𝑑′)

𝐺(𝑐)(𝑔)

𝐺(𝑓 )𝑑 𝐺(𝑓 )𝑑′
𝐺(𝑐′)(𝑔)

We let 𝐺′(𝑓 , 𝑔) be the diagonal morphism in this diagram, which is a mor-
phism in 𝖤 from 𝐺′(𝑐, 𝑑) to 𝐺′(𝑐′, 𝑑′).

We claim that the assignment 𝐺′ is a functor from 𝖢 × 𝖣 to 𝖤. It remains
to verify the functoriality of 𝐺′.

• We have to show that 𝐺′(1(𝑐,𝑑)) = 1𝐺′(𝑐,𝑑) for every object (𝑐, 𝑑) in 𝖢 × 𝖣.
We have 1(𝑐,𝑑) = (1𝑐 , 1𝑑), whence the morphism 𝐺′(1(𝑐,𝑑)) is defined as the
diagonal morphism in the following diagram:

𝐺(𝑐)(𝑑) 𝐺(𝑐)(𝑑)

𝐺(𝑐)(𝑑) 𝐺(𝑐)(𝑑)

𝐺(𝑐)(1𝑑 )

𝐺(1𝑐)𝑑 𝐺(1𝑐)𝑑
𝐺(𝑐)(1𝑑 )

The functor value 𝐺(𝑐) is itself a functor, from 𝖣 to 𝖤, whence

𝐺(𝑐)(1𝑑) = 1𝐺(𝑐)(𝑑) = 1𝐺′(𝑐,𝑑) .

Similarly, the natural transformation 𝐺(1𝑐) equals 1𝐺(𝑐) by the functoriality
of 𝐺, whence

𝐺(1𝑐)𝑑 = (1𝐺(𝑐))𝑑 = 1𝐺(𝑐)(𝑑) = 1𝐺′(𝑐,𝑑) .
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We can altogether rewrite the above square diagram as follows:

𝐺′(𝑐, 𝑑) 𝐺′(𝑐, 𝑑)

𝐺′(𝑐, 𝑑) 𝐺′(𝑐, 𝑑)

1𝐺′(𝑐,𝑑)

1𝐺′(𝑐,𝑑) 1𝐺′(𝑐,𝑑)
1𝐺′(𝑐,𝑑)

We see that the diagonal morphism in this diagram is 1𝐺′(𝑐,𝑑).
• We also need to show that 𝐺′((𝑓 ′, 𝑔′) ⋅ (𝑓 , 𝑔)) = 𝐺′(𝑓 ′, 𝑔′) ⋅ 𝐺′(𝑓 , 𝑔) for
every two composable morphisms

(𝑓 , 𝑔)∶ (𝑐, 𝑑) ⟶ (𝑐′, 𝑑′) and (𝑓 ′, 𝑔′)∶ (𝑐′, 𝑑′) ⟶ (𝑐″, 𝑑″)
in 𝖢 × 𝖣. We consider the following commutative diagram:

𝐺(𝑐)(𝑑) 𝐺(𝑐)(𝑑′) 𝐺(𝑐)(𝑑″)

𝐺(𝑐′)(𝑑) 𝐺(𝑐′)(𝑑′) 𝐺(𝑐′)(𝑑″)

𝐺(𝑐″)(𝑑) 𝐺(𝑐″)(𝑑′) 𝐺(𝑐″)(𝑑″)

𝐺(𝑐)(𝑔)

𝐺(𝑓 )𝑑
𝐺′(𝑓 ,𝑔)

𝐺(𝑐)(𝑔′)

𝐺(𝑓 )𝑑′
𝐺′(𝑓 ,𝑔′) 𝐺(𝑓 )𝑑″

𝐺(𝑐′)(𝑔)

𝐺(𝑓 ′)𝑑
𝐺′(𝑓 ′,𝑔)

𝐺(𝑐′)(𝑔′)

𝐺(𝑓 ′)𝑑′
𝐺′(𝑓 ′,𝑔′) 𝐺(𝑓 ′)𝑑″

𝐺(𝑐″)(𝑔) 𝐺(𝑐″)(𝑔′)

Leaving out the middle node of this diagram, we get the following commu-
tative subdiagram:

𝐺(𝑐)(𝑑) 𝐺(𝑐)(𝑑″)

𝐺(𝑐″)(𝑑) 𝐺(𝑐″)(𝑑″)

𝐺(𝑐)(𝑔′)⋅𝐺(𝑐)(𝑔)

𝐺(𝑓 ′)𝑑 ⋅𝐺(𝑓 )𝑑 𝐺′(𝑓 ′,𝑔′)⋅𝐺(𝑓 ,𝑔) 𝐺(𝑓 ′)𝑑″ ⋅𝐺(𝑓 )𝑑″

𝐺(𝑐″)(𝑔′)⋅𝐺(𝑐″)(𝑔)
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It follows from the functoriality of 𝐺(𝑐) that the upper horizontal arrow
can be simplified as 𝐺(𝑐)(𝑔′𝑔). Similarly, the lower horizontal arrow can
be simplified as 𝐺(𝑐″)(𝑔′𝑔). The vertical arrow on the left-hand side can
be rewritten as (𝐺(𝑓 ′) ⋅ 𝐺(𝑓 ))𝑑 , and thus as 𝐺(𝑓 ′𝑓 )𝑑 by the functoriality
of 𝐺. Similarly, the vertical arrow on the right-hand side can be rewritten
as 𝐺(𝑓 ′𝑓 )𝑑″ . We get overall the following commutative diagram:

𝐺(𝑐)(𝑑) 𝐺(𝑐)(𝑑″)

𝐺(𝑐″)(𝑑) 𝐺(𝑐″)(𝑑″)

𝐺(𝑐)(𝑔′𝑔)

𝐺(𝑓 ′𝑓 )𝑑 𝐺′(𝑓 ′,𝑔′)𝐺(𝑓 ,𝑔) 𝐺(𝑓 ′𝑓 )𝑑″

𝐺(𝑐″)(𝑔′𝑔)

The morphism 𝐺′((𝑓 ′, 𝑔′) ⋅ (𝑓 , 𝑔)) = 𝐺′(𝑓 ′𝑓 , 𝑔′𝑔) is defined as the diago-
nal morphism in precisely this commutative square diagram. Consequently,
this morphism agrees with the composite 𝐺′(𝑓 ′, 𝑔′) ⋅ 𝐺′(𝑓 , 𝑔).

The constructions are mutually inverse

It remains to show that the two constructions are mutually inverse.

First part Let first 𝐹 be a bifunctor from 𝖢 × 𝖣 to 𝖤, let 𝐹 ′ be the induced
functor from 𝖢 to 𝖤𝖣, and let 𝐹″ be the induced bifunctor from 𝖢 × 𝖣 to 𝖤.

We have for every object (𝑐, 𝑑) of 𝖢 × 𝖣 the sequence of equalities

𝐹″(𝑐, 𝑑) = 𝐹 ′(𝑐)(𝑑) = 𝐹(𝑐, −)(𝑑) = 𝐹(𝑐, 𝑑) .

For every morphism (𝑓 , 𝑔)∶ (𝑐, 𝑑) → (𝑐′, 𝑑′) in 𝖢 ×𝖣, the morphism 𝐹″(𝑓 , 𝑔)
is defined as the diagonal morphism in the following commutative square
diagram:

𝐹 ′(𝑐)(𝑑) 𝐹 ′(𝑐)(𝑑′)

𝐹 ′(𝑐′)(𝑑) 𝐹 ′(𝑐′)(𝑑′)

𝐹 ′(𝑐)(𝑔)

𝐹 ′(𝑓 )𝑑 𝐹 ′(𝑓 )𝑑′
𝐹 ′(𝑐′)(𝑔)
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Using the definition of 𝐹 ′, this diagram can be rewritten as follows:

𝐹(𝑐, 𝑑) 𝐹(𝑐, 𝑑′)

𝐹 (𝑐′, 𝑑) 𝐹 (𝑐′, 𝑑′)

𝐹(1𝑐 ,𝑔)

𝐹 (𝑓 ,1𝑑 ) 𝐹 (𝑓 ,1𝑑′)
𝐹 (1𝑐′ ,𝑔)

The diagonal morphism in this diagram is given by

𝐹(𝑓 , 1𝑑′) ⋅ 𝐹 (1𝑐 , 𝑔) = 𝐹((𝑓 , 1𝑑′) ⋅ (1𝑐 , 𝑔)) = 𝐹(𝑓 1𝑐 , 1𝑑′𝑔) = 𝐹(𝑓 , 𝑔) .
This shows altogether that 𝐹″(𝑓 , 𝑔) equals 𝐹(𝑓 , 𝑔).

Second part Let now 𝐺 be a functor from 𝖢 to 𝖤𝖣. Let 𝐺′ be the induced
bifunctor from 𝖢 × 𝖣 to 𝖤, and let 𝐺″ be the induced functor from 𝖢 to 𝖣𝖤.
We want to show that 𝐺″ = 𝐺. To this end we need to show that the two
functors 𝐺″ and 𝐺 agree both on objects and on morphisms.

We first show that 𝐺″(𝑐) = 𝐺(𝑐) for every object 𝑐 of 𝖢, i.e., that the two
functors 𝐺 and 𝐺″ agree on objects. We need to show that the two func-
tors 𝐺″(𝑐) and 𝐺(𝑐) from 𝖣 to 𝖤 agree both on objects and on morphisms.

• Let 𝑑 be an arbitrary object of 𝖣. We have the sequence of equalities

𝐺″(𝑐)(𝑑) = 𝐺′(𝑐, 𝑑) = 𝐺(𝑐)(𝑑) .
This tells us that 𝐺″(𝑐) and 𝐺(𝑐) agree on objects.

• Let 𝑔 ∶ 𝑑 → 𝑑′ be a morphism in 𝖣. The morphism 𝐺″(𝑐)(𝑔) is defined
as 𝐺′(1𝑐 , 𝑔), which in turn is defined as the diagonal morphism in the fol-
lowing commutative diagram:

𝐺(𝑐)(𝑑) 𝐺(𝑐)(𝑑′)

𝐺(𝑐)(𝑑) 𝐺(𝑐)(𝑑′)

𝐺(𝑐)(𝑔)

𝐺(1𝑐)𝑑 𝐺(1𝑐)𝑑′
𝐺(𝑐)(𝑔)

We know from the functoriality of 𝐺 that

𝐺(1𝑐)𝑑 = (1𝐺(𝑐))𝑑 = 1𝐺(𝑐)(𝑑)
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It follows that the diagonal morphism in the above diagram is

𝐺(𝑐)(𝑔) ⋅ 𝐺(1𝑐)𝑑 = 𝐺(𝑐)(𝑔) ⋅ 1𝐺(𝑐)(𝑑) = 𝐺(𝑐)(𝑔) .
This shows that 𝐺″(𝑐)(𝑔) = 𝐺(𝑐)(𝑔), so that 𝐺″(𝑐) and 𝐺(𝑐) agree on mor-
phisms.

This shows altogether that the two functors 𝐺″ and 𝐺 agree on objects.
We now show that the two functors 𝐺″ and 𝐺 agree on morphisms. To

this end, let 𝑓 ∶ 𝑐 → 𝑐′ be a morphism in 𝖢. We need to show that the two
natural transformations 𝐺″(𝑓 ) and 𝐺(𝑓 ) from 𝐺″(𝑐) = 𝐺(𝑐) to 𝐺″(𝑐′) = 𝐺(𝑐′)
are equal. We hence need to show that 𝐺″(𝑓 )𝑑 = 𝐺(𝑓 )𝑑 for every object 𝑑
of 𝖣. The morphism 𝐺″(𝑓 )𝑑 is defined as 𝐺′(𝑓 , 1𝑑), which in turn is defined
as the diagonal morphism in the following commutative diagram:

𝐺(𝑐)(𝑑) 𝐺(𝑐)(𝑑)

𝐺(𝑐′)(𝑑) 𝐺(𝑐′)(𝑑)

𝐺(𝑐)(1𝑑 )

𝐺(𝑓 )𝑑 𝐺(𝑓 )𝑑
𝐺(𝑐′)(1𝑑 )

We know from the functoriality of 𝐺(𝑐) that 𝐺(𝑐)(1𝑑) = 1𝐺(𝑐)(𝑑). The diagonal
morphism in the above diagram is therefore given by

𝐺(𝑓 )𝑑 ⋅ 𝐺(𝑐)(1𝑑) = 𝐺(𝑓 )𝑑 ⋅ 1𝐺(𝑐)(𝑑) = 𝐺(𝑓 )𝑑 ,
as desired.
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Chapter 2

Universal Properties,
Representability, and
the Yoneda Lemma

2.1 Representable functors

Exercise 2.1.i
We denote the given functors by

𝐼0∶ 𝟙 ⟶ 𝟚 , 0 ⟼ 0 ,
𝐼1∶ 𝟙 ⟶ 𝟚 , 0 ⟼ 1 ,

as well as
𝑃 ∶ 𝟚 ⟶ 𝟙 , 0, 1 ⟼ 0 , 𝑖 ⟼ 10 ,

where 𝑖∶ 0 → 1 denotes the unique non-identity morphism in 𝟚. These func-
tors induce morphisms in 𝖢𝖺𝗍, i.e., natural transformations,

𝐼 ∗0 ∶ 𝖢𝖺𝗍(𝟚, −) ⟶ 𝖢𝖺𝗍(𝟙, −) ,
𝐼 ∗1 ∶ 𝖢𝖺𝗍(𝟚, −) ⟶ 𝖢𝖺𝗍(𝟙, −) ,
𝑃∗∶ 𝖢𝖺𝗍(𝟙, −) ⟶ 𝖢𝖺𝗍(𝟚, −) .

Under the canonical isomorphisms 𝖢𝖺𝗍(𝟚, −) ≅ mor and 𝖢𝖺𝗍(𝟙, −) ≅ ob these
natural transformation correspond to natural transformations

𝛼, 𝛽 ∶ mor ⟶ ob , 𝛾 ∶ ob ⟶ mor .
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The natural transformation 𝛼
Let 𝑓 ∶ 𝑥 → 𝑦 be a morphism in a small category 𝖢. Under the isomor-
phism 𝖢𝖺𝗍(𝟚, 𝖢) ≅ mor𝖢 the morphism 𝑓 corresponds to the functor

𝐹 ∶ 𝟚 ⟶ 𝖢 , 0 ⟼ 𝑥 , 1 ⟼ 𝑦 , 𝑖 ⟼ 𝑓 .

The resulting functor 𝐼 ∗0 (𝐹 ) = 𝐹 𝐼0 is given by

𝐹 𝐼0∶ 𝟙 ⟶ 𝖢 , 0 ⟼ 𝑥 .

Under the isomorphism 𝖢𝖺𝗍(𝟙, 𝖢) ≅ ob𝖢 the functor 𝐹 𝐼0 corresponds to the
object 𝑥 .

We find overall that the component 𝛼𝖢∶ mor𝖢 → ob𝖢 assigns to each
morphism its domain.

The natural transformation 𝛽
We find in the same way that for every small category 𝖢 the component 𝛽𝖢
assigns to each morphism in 𝖢 its codomain.

The natural transformation 𝛾
Let 𝑥 be an object of a small category 𝖢. The corresponding functor under
the isomorphism 𝖢𝖺𝗍(𝟙, 𝖢) ≅ ob𝖢 is given by

𝐹 ∶ 𝟙 ⟶ 𝖢 , 0 ⟼ 𝑥 .

The resulting functor 𝑃∗(𝐹 ) = 𝑃𝐹 is given by

𝑃𝐹 ∶ 𝟚 ⟶ 𝖢 , 0, 1 ⟼ 𝑥 , 𝑖 ⟼ 1𝑥 .

Under the isomorphism 𝖢𝖺𝗍(𝟚, 𝖢) ≅ mor𝖢 the functor 𝑃𝐹 corresponds to the
morphism 1𝑥 .

We find overall that the component 𝛾𝖢∶ ob𝖢 → mor𝖢 assigns to each
object its identity morphism.
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Exercise 2.1.ii
Representable functors preserve monomorphisms

There exists by assumption an object 𝑐 of 𝖢 for which the two functors 𝐹
and 𝖢(𝑐, −) are isomorphic. Let 𝛼 be a natural isomorphism from 𝖢(𝑐, −) to 𝐹 .

Let 𝑓 ∶ 𝑥 → 𝑦 be a monomorphism in 𝖢. This entails that the induced
map 𝑓∗∶ 𝖢(𝑐, 𝑥) → 𝖢(𝑐, 𝑦) is injective. We thus have the commutative square
diagram

𝖢(𝑐, 𝑥) 𝖢(𝑐, 𝑦)

𝐹 (𝑥) 𝐹(𝑦)

𝑓∗

𝛼𝑥 𝛼𝑦
𝐹(𝑓 )

in which both vertical arrows are bijections and the upper horizontal arrow
is injective. It follows that

𝐹(𝑓 ) = 𝛼𝑦𝑓∗𝛼−1𝑥

is a composite of injections, and therefore itself injective. This shows that
the functor 𝐹 preserves monomorphisms, as the monomorphisms in 𝖲𝖾𝗍 are
precisely those maps that are injective.

A non-representable functor

For every group 𝐺 let 𝐶(𝐺) be its set of conjugacy classes. Every homomor-
phism of groups 𝜑 ∶ 𝐺 → 𝐻 induces a map 𝐶𝜑∶ 𝐶(𝐺) → 𝐶(𝐻) that assigns
to the conjugacy class of an element 𝑔 the conjugacy class of the image ele-
ment 𝜑(𝑔). The assignment 𝐶 is a functor from 𝖦𝗋𝗈𝗎𝗉 to 𝖲𝖾𝗍.

Let 𝑆3 be the symmetric group on three letters. This group contains two
elements 𝜌1 and 𝜌2 of order 3, which are conjugated to one another. The two
elements 𝜌1 and 𝜌2 are related via 𝜌2 = 𝜌21 .

Let 𝑖 be the inclusion homomorphism from ℤ/3 to 𝑆3 given by 𝑖([1]) = 𝜌1.
Then also

𝑖([2]) = 𝑖(2 ⋅ [1]) = 𝑖([1])2 = 𝜌21 = 𝜌2 .
The group ℤ/3 is abelian, whence each element of ℤ/3 forms its own con-
jugacy class. The homomorphism 𝑖 therefore maps the two non-conjugated
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elements [1] and [2] ofℤ/3 onto the two conjugated elements 𝜌1 and 𝜌2 of 𝑆3.
This tells us that the induced map 𝐶𝑖 is not injective.

We find that the functor 𝐶 does not preserve monomorphisms. It therefore
cannot be representable.

Exercise 2.1.iii

We first observe that parts (i) and (ii) are equivalent:
Let 𝐾 be an essential inverse to 𝐻 . We have the sequence of isomorphisms

𝐹𝐾 ≅ 𝐺𝐻𝐾 ≅ 𝐺1𝖣 ≅ 𝐺 .

We hence find that parts (i) and (ii) are interchangeable via

𝖢 ⟷ 𝖣 , 𝐹 ⟷ 𝐺 , 𝐻 ⟷ 𝐾 .

In the following, we prove part (i).
That 𝐺 is representable tells us that there exists an object 𝑑 of 𝖣 such

that 𝐺 ≅ 𝖣(𝑑, −). There exists an object 𝑐 of 𝖢 with 𝑑 ≅ 𝐻(𝑐) because the
functor 𝐻 is an equivalence, and thus essentially surjective. It follows that

𝐹 ≅ 𝐺𝐻 ≅ 𝖣(𝑑, −)𝐻 ≅ 𝖣(𝑑, 𝐻(−)) ≅ 𝖣(𝐻(𝑐), 𝐻(−)) ≅ 𝖢(𝑐, −) .

This shows that the functor 𝐹 is represented by the object 𝑐.

Exercise 2.1.iv

A subfunctor 𝐹 of𝖢(𝑐, −) consists of a subset 𝐹(𝑥) of𝖢(𝑐, 𝑥) for every object 𝑥
of 𝖢 such that

𝑔∗(𝐹 (𝑥)) ⊆ 𝐹(𝑦)
for every morphism 𝑔 ∶ 𝑥 → 𝑦 in 𝖢. In other words, we have a collection
of distinguished morphisms that is closed under post-composition with arbi-
trary other morphisms.

We have not been able to find a better, or more explicit description of such
subfunctors.
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Exercise 2.1.v

The category 𝕀 consists of two objects, named 0 and 1, a morphism 𝑖 from 0
to 1 and a morphism 𝑗 from 1 to 0 (and the two identity morphisms). We have
for every category 𝖢 a bijection given by

𝖢𝖺𝗍(𝕀, 𝖢) ⟶ {isomorphisms in 𝖢} , 𝐹 ⟼ 𝐹𝑖 .

The category 𝟙 is the subcategory of 𝕀 that consists of both objects and the
morphism 𝑖 (and the two identity morphisms). We have for every category 𝖢
a bijection given by

𝖢𝖺𝗍(𝟙, 𝖢) ⟶ {morphisms in 𝖢} , 𝐹 ⟼ 𝐹𝑖 .

We see that for every category 𝖢 the inclusion

{isomorphisms in 𝖢} ⊆ {morphisms in 𝖢}

corresponds to the pullback map

𝐼 ∗∶ 𝖢𝖺𝗍(𝕀, 𝖢) ⟶ 𝖢𝖺𝗍(𝟙, 𝖢)

induced by the inclusion functor 𝐼 ∶ 𝟙 → 𝕀.

2.2 The Yoneda lemma

Exercise 2.2.i

The dual version of the Yoneda lemma is as follows:

For every contravariant functor 𝐹 ∶ 𝖢 → 𝖲𝖾𝗍, whose domain 𝖢 is
locally small, and every object 𝑐 of 𝖢, the map

Φ∶ Hom(𝖢(−, 𝑐), 𝐹 ) ⟶ 𝐹𝑐 , 𝛼 ⟼ 𝛼𝑐(1𝑐)

is bijective and natural in both 𝑐 and 𝐹 .
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Injectivity of Φ
To see that the map Φ is injective let 𝛼 ∶ 𝖢(−, 𝑐) ⇒ 𝐹 be a natural isomor-
phism, let 𝑥 be an arbitrary object of 𝖢 and let 𝑓 be an arbitrary element
of 𝖢(−, 𝑐)(𝑥). As 𝖢(−, 𝑐)(𝑥) = 𝖢(𝑥, 𝑐), this means that 𝑓 is a morphism from 𝑥
to 𝑐 in 𝖢. It follows from the commutativity of the square diagram

𝖢(𝑐, 𝑐) 𝖢(𝑥, 𝑐)

𝐹 𝑐 𝐹𝑥

𝑓 ∗

𝛼𝑐 𝛼𝑥
𝐹𝑓

that

𝛼𝑥(𝑓 ) = 𝛼𝑥(1𝑐 ⋅ 𝑓 ) = 𝛼𝑥(𝑓 ∗(1𝑐)) = (𝐹𝑓 )(𝛼𝑐(1𝑐)) = (𝐹𝑓 )(Φ(𝛼)) .
This shows that the entire natural transformation 𝛼 is uniquely determined
by the single element Φ(𝛼).

Surjectivity of Φ
Let 𝑢 be an arbitrary element of the set 𝐹𝑐. We consider for every object 𝑥
of 𝖢 the map

𝛼𝑥 ∶ 𝖢(𝑥, 𝑐) ⟶ 𝐹𝑥 , 𝑔 ⟼ (𝐹𝑔)(𝑢) .
(Note that if 𝑔 is a morphism from 𝑥 to 𝑐 in 𝖢, then 𝐹𝑔 is a map from 𝐹𝑐
to 𝐹𝑥 , whence (𝐹𝑔)(𝑢) is a well-defined element of the set 𝐹𝑥 .) We claim
that the family 𝛼 ≔ (𝛼𝑥)𝑥∈𝖢 is a natural transformation from 𝖢(−, 𝑐) to 𝐹
with Φ(𝛼) = 𝑢.

To see that 𝛼 is a natural transformation from 𝖢(−, 𝑐) to 𝐹 , we consider an
arbitrary morphism 𝑓 ∶ 𝑥 → 𝑦 in 𝖢 and the resulting diagram:

𝖢(𝑦, 𝑐) 𝖢(𝑥, 𝑐)

𝐹𝑦 𝐹𝑥

𝑓 ∗

𝛼𝑦 𝛼𝑥
𝐹𝑓

This diagram commutes because

𝛼𝑥(𝑓 ∗(ℎ)) = 𝛼𝑥(ℎ𝑓 ) = 𝐹(ℎ𝑓 )(𝑢) = (𝐹𝑓 )((𝐹ℎ)(𝑢)) = (𝐹𝑓 )(𝛼𝑦 (ℎ))
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for every element ℎ of 𝖢(𝑦, 𝑐), i.e., every morphism ℎ∶ 𝑐 → 𝑦 in 𝖢. This
shows the naturality of 𝛼 .

We also have Φ(𝛼) = 𝛼𝑐(1𝑐) = (𝐹1𝑐)(𝑢) = 1𝐹(𝑐)(𝑢) = 𝑢, as desired.

Naturality in 𝑐
We relabel the bijection Φ as Φ𝑐 , and want to show that Φ𝑐 is natural in 𝑐.

Let 𝑓 ∶ 𝑐 → 𝑑 be a morphism in 𝖢. We need to show that the square
diagram

Hom(𝖢(−, 𝑑), 𝐹 ) Hom(𝖢(−, 𝑐), 𝐹 )

𝐹𝑑 𝐹 𝑐

(𝑓∗)∗

Φ𝑑 Φ𝑐

𝐹𝑓

(2.1)

commutes. To this end let 𝛼 be an element in the top-left corner of this di-
agram, i.e., a natural transformation from 𝖢(−, 𝑑) to 𝐹 . One path from the
top-left corner to the bottom-right corner in the diagram (2.1) equals

Φ𝑐((𝑓∗)∗(𝛼)) = Φ𝑐(𝛼 ⋅ 𝑓∗)
= (𝛼 ⋅ 𝑓∗)𝑐(1𝑐)
= (𝛼𝑐 ⋅ (𝑓∗)𝑐)(1𝑐)
= 𝛼𝑐((𝑓∗)𝑐(1𝑐))
= 𝛼𝑐(𝑓 ⋅ 1𝑐)
= 𝛼𝑐(𝑓 ) .

For the other path from the top-left corner to the bottom-right corner we
observe that the diagram

𝖢(𝑑, 𝑑) 𝖢(𝑐, 𝑑)

𝐹𝑑 𝐹 𝑐

𝑓 ∗

𝛼𝑑 𝛼𝑐
𝐹𝑓

commutes by the naturality of 𝛼 , whence

(𝐹𝑓 )(Φ𝑑(𝛼)) = (𝐹𝑓 )(𝛼𝑑(1𝑑)) = 𝛼𝑐(𝑓 ∗(1𝑑)) = 𝛼𝑐(1𝑑 ⋅ 𝑓 ) = 𝛼𝑐(𝑓 ) .
This shows the commutativity of the diagram (2.1).
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Naturality in 𝐹
We relabel the bijection Φ as Φ𝐹 , and want to show that Φ𝐹 is natural in 𝐹 .

Let 𝐹 and 𝐺 be two contravariant functors from 𝖢 to 𝖲𝖾𝗍, and let 𝛽 ∶ 𝐹 ⇒ 𝐺
be a natural transformation. We need to show that the square diagram

Hom(𝖢(−, 𝑐), 𝐹 ) Hom(𝖢(−, 𝑐), 𝐺)

𝐹 𝑐 𝐺𝑐

𝛽∗

Φ𝐹 Φ𝐺

𝛽𝑐

commutes. To this end let 𝛼 be an element of the top-left corner of this dia-
gram, i.e., let 𝛼 be a natural transformation from 𝖢(−, 𝑐) to 𝐹 . The sequence
of equalities

Φ𝐺(𝛽∗(𝛼)) = Φ𝐺(𝛽 ⋅ 𝛼) = (𝛽 ⋅ 𝛼)𝑐(1𝑐) = (𝛽𝑐 ⋅ 𝛼𝑐)(1𝑐) = 𝛽𝑐(𝛼𝑐(1𝑐)) = 𝛽𝑐(Φ𝐹 (𝛼))

tells us that the diagram indeed commutes.

Exercise 2.2.ii

Why should it?

Exercise 2.2.iii

The functor category 𝖢 ≔ 𝖲𝖾𝗍(ωop) can be regarded as the category of con-
travariant functors from ω to 𝖲𝖾𝗍. This category can (up to isomorphism)
more explicitly be described as follows:

• The objects of 𝖢 are diagrams of the form

𝐴0 𝐴1 𝐴2 𝐴3 ⋯𝑎0 𝑎1 𝑎2

consisting of sets and maps between them.

• A morphism from an object ((𝐴𝑛)𝑛, (𝑎𝑛)𝑛) to an object ((𝐵𝑛)𝑛, (𝑏𝑛)𝑛) is a se-
quence (𝑓𝑛)𝑛 of maps 𝑓𝑛 ∶ 𝐴𝑛 → 𝐵𝑛 such that the following diagram com-
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mutes:

𝐴0 𝐴1 𝐴2 𝐴3 ⋯

𝐵0 𝐵1 𝐵2 𝐵3 ⋯
𝑓0

𝑎0

𝑓1

𝑎1

𝑓2

𝑎2

𝑓3
𝑏0 𝑏1 𝑏2

For every object 𝑛 of ω, the objectよ(𝑛) = ω(−, 𝑛) consists of 𝑛 + 1 many
singleton sets, followed by empty sets:1

{∗} ⟵ {∗} ⟵ ⋯ ⟵ {∗} ⟵ ∅ ⟵ ∅ ⟵ ⋯

We know that in ω there exists a unique morphism from 𝑛 to 𝑚 if 𝑛 ≤ 𝑚, and
no morphism if 𝑛 > 𝑚. It suffices to show that the same holds true for the
induced diagramsよ(𝑛) andよ(𝑚).
• Suppose that 𝑛 ≤ 𝑚. Then there exists precisely one sequence of maps (𝑓𝑛)𝑛
that makes the following diagram commute:

よ(𝑛)∶ {∗} ⋯ {∗} ∅ ⋯ ∅ ∅ ⋯

よ(𝑚)∶ {∗} ⋯ {∗} {∗} ⋯ {∗} ∅ ⋯

𝑓0 ⋰ 𝑓𝑛 𝑓𝑛+1 ⋰ 𝑓𝑚 𝑓𝑚+1

Indeed, themaps 𝑓0, … , 𝑓𝑛 are necessarily the identitymaps on the singleton
set, and 𝑓𝑘 for 𝑘 > 𝑛 is necessarily the empty map.

• Suppose now that 𝑛 > 𝑚. A morphism 𝑓 ∶ よ(𝑛) → よ(𝑚) contains a
map 𝑓𝑚+1∶ {∗} → ∅, but such a map does not exist. Consequently, no
morphism fromよ(𝑛) toよ(𝑚) exists.

Exercise 2.2.iv
We know that a natural transformation is a natural isomorphism if and only
if it is an isomorphism in each component. The isomorphisms in 𝖲𝖾𝗍 are
precisely the bijective maps. A natural transformation between 𝖲𝖾𝗍-valued

1We denote the Yoneda embedding byよ instead of 𝑦 .
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functors is therefore a natural isomorphism if and only if it is bijective in
each component.

We also know that the induced transformations 𝑓∗ and 𝑓 ∗ in parts (ii)
and (iii) are always natural.

This exercise is therefore just a reformulation of Lemma 1.2.3.

Exercise 2.2.v

The set Ω consists of two elements, whence it admits 22 = 4 maps into itself.
These maps are as follows:

1. The identity map.

2. The transposition that swaps ⊤ and ⊥.
3. The constant map with value ⊤.
4. The constant map with value ⊥.

We denote these maps by 1Ω, 𝜎 , 𝑐⊤ and 𝑐⊥ respectively.
The natural isomorphism between 𝑃(𝑋) and 𝖲𝖾𝗍(𝑋 , Ω) is for every set 𝑋

given as follows:

• For every function 𝜒 ∶ 𝑋 → Ω, the corresponding subset of 𝑋 is the preim-
age 𝜒−1(⊤).

• For every subset 𝐴 of 𝑋 , the corresponding function is its characteristic
function

𝜒𝐴∶ 𝑋 ⟶ Ω , 𝑥 ⟼ {⊤ if 𝑥 ∈ 𝐴,
⊥ if 𝑥 ∉ 𝐴.

We denote this natural isomorphism from 𝖲𝖾𝗍(−, Ω) to 𝑃 by 𝛼 .

1. The natural endomorphism (1Ω)∗ of 𝖲𝖾𝗍(−, Ω) is 1𝖲𝖾𝗍(−,Ω). The correspond-
ing endomorphism of 𝑃 is given by

𝛼 ⋅ (1Ω)∗ ⋅ 𝛼−1 = 𝛼1𝖲𝖾𝗍(−,Ω)𝛼−1 = 𝛼𝛼−1 = 1𝑃 .

In other words, the identity map induces the identity endomorphism.
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2. The natural endomorphism of 𝑃 induced by 𝜎 is given by 𝛼𝜎∗𝛼−1, and its
components are given by

(𝛼 ⋅ 𝜎∗ ⋅ 𝛼−1)𝑋 (𝐴) = 𝛼𝑋 ((𝜎∗)𝑋 (𝛼−1𝑋 (𝐴)))
= 𝛼𝑋 ((𝜎∗)𝑋 (𝜒𝐴))
= 𝛼𝑋 (𝜎𝜒𝐴)
= (𝜎𝜒𝐴)−1(⊤)
= 𝜒−1𝐴 (𝜎−1(⊤))
= 𝜒−1𝐴 (⊥)
= 𝑋 ∖ 𝐴 .

In other words, it is given by taking complements.

3. The natural endomorphism of 𝑃 induced by 𝑐⊤ is given by 𝛼(𝑐⊤)∗𝛼−1, and
its components are given by

(𝛼 ⋅ (𝑐⊤)∗ ⋅ 𝛼−1)𝑋 (𝐴) = ⋯
= 𝜒−1𝐴 (𝑐−1⊤ (⊤))
= 𝜒−1𝐴 (Ω)
= 𝑋 .

In other words, it is given by mapping each subset to the entire set.

4. The natural endomorphism of 𝑃 induced by 𝑐⊥ is given by 𝛼(𝑐⊥)∗𝛼−1, and
its components are given by

(𝛼 ⋅ (𝑐⊥)∗ ⋅ 𝛼−1)𝑋 (𝐴) = ⋯
= 𝜒−1𝐴 (𝑐−1⊥ (⊤))
= 𝜒−1𝐴 (∅)
= ∅ .

In other words, it is given by mapping each subset to the empty set.

Exercise 2.2.vi
Remark 2.A. The formulation of the question is slightly misleading: an “en-
domorphism of the category of spaces” is a functor 𝖳𝗈𝗉 → 𝖳𝗈𝗉, and there
are many such functors (e.g., constant functors). But the question then asks
for something else: a non-identity natural endomorphism for an arbitrary
topological space.
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First solution

Suppose that we are given for every topological space 𝑋 a continuous map

𝑓𝑋 ∶ 𝑋 ⟶ 𝑋
that is natural in 𝑋 . More explicitly, this means that for every continuous
map 𝑔 ∶ 𝑋 → 𝑌 the following square diagram has to commute:

𝑋 𝑋

𝑌 𝑌

𝑓𝑋

𝑔 𝑔
𝑓𝑌

Let 𝑋 be an arbitrary topological space, and for every element 𝑥 of 𝑋 let 𝑔𝑥
be the map from {∗} to 𝑋 that picks out the element 𝑥 , i.e.,

𝑔𝑥 ∶ {∗} ⟶ 𝑋 , ∗ ⟼ 𝑥 .
The map 𝑔𝑥 is continuous, whence the diagram

{∗} {∗}

𝑋 𝑋

1{∗}

𝑔𝑥 𝑔𝑥
𝑓𝑋

commutes. This commutativity means that

𝑓𝑋 (𝑥) = 𝑓𝑋 (𝑔𝑥(∗)) = 𝑔𝑥(∗) = 𝑥 .
As these equalities hold for every element 𝑥 of 𝑋 , we find that 𝑓𝑋 is the iden-
tity map on 𝑋 .

The answer to the initial question is therefore “no”: there is no non-identity
solution.

Second solution

The question at hand is whether the identity functor of 𝖳𝗈𝗉 admits a non-
trivial endomorphism. Suppose such an endomorphism 𝛼 were to exist.
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Let 𝑈 be the forgetful functor from 𝖳𝗈𝗉 to 𝖲𝖾𝗍. Thewhiskered natural trans-
formation 𝑈𝛼 from 𝑈1𝖳𝗈𝗉 = 𝑈 to 𝑈1𝖳𝗈𝗉 = 𝑈 is again non-identity because
the functor 𝑈 is faithful. More explicitly, there exists some object 𝑋 of 𝖳𝗈𝗉
for which 𝛼𝑋 ≠ 1𝑋 , and then also (𝑈 𝛼)𝑋 = 𝑈𝛼𝑋 ≠ 𝑈1𝑋 = 1𝑈𝑋 .

This shows that every non-identity endomorphism of the identity func-
tor 1𝖳𝗈𝗉 induces a non-identity endomorphism of the forgetful functor 𝑈 .

But 𝑈 is represented by the singleton space {∗}. Therefore, because the
Yoneda embedding is full and faithful, endomorphisms of 𝑈 are in one-to-one
correspondence with endomorphisms of {∗}.

But {∗} admits only the identity endomorphism. Consequently, 𝑈 admits
only the identity endomorphism. Even consequentlier, 1𝖳𝗈𝗉 admits only the
identity endomorphism.

Exercise 2.2.vii
The path functor is represented by the unit interval. It follows from the
Yoneda embedding that each automorphism of the path functor is induced
by an automorphism of the unit interval.

More explicitly, suppose that we have for every topological space 𝑋 a
reparametrization procedure

𝛼𝑋 ∶ Path(𝑋) ⟶ Path(𝑋) ,
and that this procedure is natural in𝑋 . Then there exists a homeomorphism 𝑟
of the unit interval 𝐼 such that

𝛼𝑋 (𝛾 ) = 𝛾 𝑟
for every path 𝛾 in 𝑋 .

We can further characterize homeomorphisms of the unit interval.

Proposition 2.B. Every homeomorphism of the unit interval is strictly mono-
tone, i.e., strictly increasing or strictly decreasing.

Proof. Let 𝑓 be a homeomorphism of 𝐼 . The two endpoints 0 and 1 of 𝐼 are
the only two points in 𝐼 whose removal does not split the interval into two
path components. Consequently, 𝑓 needs to permute these two endpoints.
So either 𝑓 (0) = 0 and 𝑓 (1) = 1, or 𝑓 (0) = 1 and 𝑓 (1) = 0. We can switch
between the two cases by post-composing 𝑓 with the flip map 𝜎 ∶ 𝑥 ↦ 1 − 𝑥 .
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Also, 𝑓 is strictly decreasing if and only if 𝜎𝑓 is strictly increasing. It therefore
suffices to consider the first case.

We observe that if 𝑥 and 𝑦 are two points in 𝐼 with 𝑥 < 𝑦 and 𝑓 (𝑥) < 𝑓 (𝑦),
then we have 𝑓 (𝑥) < 𝑓 (𝑡) < 𝑓 (𝑦) for every 𝑡 with 𝑥 < 𝑡 < 𝑦 . Indeed, suppose
otherwise. Then either 𝑓 (𝑡) ≤ 𝑓 (𝑥) < 𝑓 (𝑦) or 𝑓 (𝑥) < 𝑓 (𝑦) ≤ 𝑓 (𝑡).

• If 𝑓 (𝑡) ≤ 𝑓 (𝑥) < 𝑓 (𝑦), then it follows from the intermediate value theo-
rem that

𝑓 (𝑥) ∈ [𝑓 (𝑡), 𝑓 (𝑦)] ⊆ 𝑓 ([𝑡, 𝑦])
even though 𝑥 is not contained in the interval [𝑡, 𝑦]. This contradicts the
injectivity of 𝑓 .

• If 𝑓 (𝑥) < 𝑓 (𝑦) ≤ 𝑓 (𝑡), then it follows from the intermediate value theo-
rem that

𝑓 (𝑦) ∈ [𝑓 (𝑥), 𝑓 (𝑡)] ⊆ 𝑓 ([𝑥, 𝑡])
even though 𝑦 is not contained in the interval [𝑥, 𝑡]. This contradicts the
injectivity of 𝑓 .

This shows that indeed 𝑓 (𝑥) < 𝑓 (𝑡) < 𝑓 (𝑦).
Let now 𝑥, 𝑦 ∈ 𝐼 with 𝑥 < 𝑦 .
• If 𝑥 = 0, then 0 < 𝑦 , therefore 𝑓 (𝑦) ≠ 𝑓 (0) = 0, thus 𝑓 (𝑦) > 0 = 𝑓 (𝑥).
• If 𝑥 ≠ 0, then 0 < 𝑥 < 𝑦 and thus 𝑓 (0) < 𝑓 (𝑥) < 𝑓 (𝑦), which entails
that 𝑓 (𝑥) < 𝑓 (𝑦).

We find in every case that 𝑓 (𝑥) < 𝑓 (𝑦). ∎
Lemma 2.C. Every strictly monotone, surjective map from 𝐼 into itself is a
homeomorphism.

Proof. Let 𝑓 be such a map. We may post-compose the map 𝑓 with the flip
map 𝑥 ↦ 1 − 𝑥 to assume that 𝑓 is strictly increasing.

The strict monotonicity of 𝑓 ensures that 𝑓 is injective. Together with the
surjectivity of 𝑓 , this tells us that 𝑓 is bijective. The inverse of 𝑓 is again
strictly increasing. It hence suffices to show that under the given condi-
tions, 𝑓 is continuous. (As swapping the roles of 𝑓 and 𝑓 −1 will then also
show that 𝑓 −1 is continuous.)

We have 0 ≤ 𝑥 for every 𝑥 ∈ 𝐼 , therefore 𝑓 (0) ≤ 𝑓 (𝑥) for every 𝑥 ∈ 𝐼 ,
thus 𝑓 (0) ≤ 𝑦 for every 𝑦 ∈ 𝐼 because 𝑓 is surjective, and hence 𝑓 (0) = 0. We
find in the same way that also 𝑓 (1) = 1.
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It follows that the extended map

𝑔 ∶ ℝ ⟶ ℝ , 𝑥 ⟼ {
𝑥 if 𝑥 ≤ 0,
𝑓 (𝑥) if 𝑥 ∈ 𝐼 ,
𝑥 if 𝑥 ≥ 1,

is continuous if and only if the original map 𝑓 is continuous. The map 𝑔 is
again strictly increasing and bijective. We show in the following that 𝑔 is
continuous.

Let 𝑥 ∈ ℝ and let 𝜀 > 0. There exists for 𝑦 ≔ 𝑔(𝑥) two points 𝑦1, 𝑦2 ∈ ℝ
with

𝑦 − 𝜀 < 𝑦1 < 𝑦 < 𝑦2 < 𝑦 + 𝜀 .
It follows for the points 𝑥1 ≔ 𝑓 −1(𝑦1) and 𝑥2 ≔ 𝑓 −1(𝑦2) that 𝑥1 < 𝑥 < 𝑥2
because the inverse map 𝑓 −1 is again strictly increasing. There hence exists
some 𝛿 > 0 with (𝑥 − 𝛿, 𝑥 + 𝛿) ⊆ [𝑥1, 𝑥2]. We have 𝑓 ([𝑥1, 𝑥2]) ⊆ [𝑓 (𝑥1), 𝑓 (𝑥2)]
because 𝑓 is increasing, and therefore

𝑓 ((𝑥 + 𝛿, 𝑥 − 𝛿)) ⊆ 𝑓 ([𝑥1, 𝑥2]) ⊆ [𝑓 (𝑥1), 𝑓 (𝑥2)] = [𝑦1, 𝑦2] ⊆ (𝑦 − 𝜀, 𝑦 + 𝜀) .

As 𝜀 > 0 was arbitrary, this shows that 𝑓 is continuous. ∎

Corollary 2.D. The homeomorphisms of the unit interval 𝐼 are precisely
those maps from 𝐼 into itself that are strictly monotone and surjective.

Equivalently, the homeomorphisms are precisely those maps 𝑓 ∶ 𝐼 → 𝐼
that are continuous, and either strictly increasing with 𝑓 (0) = 0 and 𝑓 (1) = 1
or strictly decreasing with 𝑓 (0) = 1 and 𝑓 (1) = 0. ∎

2.3 Universal properties and universal
elements

Exercise 2.3.i

Given a functor 𝐹 ∶ 𝖢 → 𝖲𝖾𝗍 and isomorphism 𝐹 ≅ 𝖢(𝑐, −) for some object 𝑐
of 𝖢, the universal element corresponding to this isomorphism is the element
of 𝐹𝑐 that corresponds to the element 1𝑐 of 𝖢(𝑐, 𝑐).
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(i)

Let 𝑖 be the unique non-identity morphism in the category 𝟚. The isomor-
phism 𝛼 ∶ 𝖢𝖺𝗍(𝟚, −) ⇒ mor is given by

𝛼𝖢(𝐹 ) = 𝐹 𝑖 .
The universal element corresponding to this isomorphism is therefore the
element 𝛼𝟚(1𝟚) = 1𝟚𝑖 = 𝑖 of mor 𝟚.

(ii)

The Sierpiński space 𝑆 is given by the two elements ⊤ and ⊥ and the three
open subsets ∅, {⊤} and 𝑆. The isomorphism 𝛼 ∶ 𝖳𝗈𝗉(−, 𝑆) ⇒ O is given by

𝛼𝑋 (𝜒) = 𝜒−1(⊤) ,
i.e., by taking the preimage of the open point. The universal element corre-
sponding to this isomorphism is therefore the element 𝛼𝑆(1𝑆) = 1−1𝑆 (⊤) = {⊤}
of O(𝑆), i.e., the open point of 𝑆.

(iii)

We find in the same way as for part (ii) that the universal element is the
element {⊥} of C(𝑆), i.e., the closed point of 𝑆.

Exercise 2.3.ii
(i)

We observe that for every bilinear map 𝛽 ∶ 𝕜 × 𝑉 → 𝑊 we have the equality

𝛽(𝜆, 𝑣) = 𝛽(1, 𝜆𝑣) .
for all 𝜆 ∈ 𝕜, 𝑣 ∈ 𝑉 . This implies that 𝛽 is uniquely determined by the linear
map

𝑉 ⟶ 𝑊 , 𝑣 ⟼ 𝛽(1, 𝑣) .
Suppose conversely that we are given an arbitrary linear map 𝑔 ∶ 𝑉 → 𝑊 .

The map
𝕜 × 𝑉 ⟶ 𝑊 , (𝜆, 𝑣) ⟼ 𝜆𝑔(𝑣)
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is then bilinear.
The above two constructions are mutually inverse, and give an isomor-

phism of vector spaces

Bil(𝕜, 𝑉 ;𝑊 ) ≅ 𝖵𝖾𝖼𝗍𝕜(𝑉 ,𝑊 )
that is natural in both 𝑉 and 𝑊 . It follows that we have the sequence of
isomorphisms

𝖵𝖾𝖼𝗍𝕜(𝕜 ⊗𝕜 𝑉 ,𝑊 ) ≅ Bil(𝕜, 𝑉 ;𝑊 ) ≅ 𝖵𝖾𝖼𝗍𝕜(𝑉 ,𝑊 )
that is natural in both 𝑉 and 𝑊 . The isomorphism of functors

𝖵𝖾𝖼𝗍𝕜(𝑘 ⊗𝕜 𝑉 , −) ≅ 𝖵𝖾𝖼𝗍𝕜(𝑉 , −)
tells us that 𝑘 ⊗𝕜 𝑉 ≅ 𝑉 .

(ii)

We have the sequence isomorphisms

𝖵𝖾𝖼𝗍𝕜(𝑈 ⊗𝕜 (𝑉 ⊗𝕜 𝑊), 𝑋) ≅ Bil(𝑈 , 𝑉 ⊗𝕜 𝑊;𝑋)
≅ 𝖵𝖾𝖼𝗍𝕜(𝑈 , 𝖵𝖾𝖼𝗍𝕜(𝑉 ⊗𝕜 𝑊,𝑋))
≅ 𝖵𝖾𝖼𝗍𝕜(𝑈 , Bil(𝑉 ,𝑊 ; 𝑋))
≅ 𝖵𝖾𝖼𝗍𝕜(𝑈 , 𝖵𝖾𝖼𝗍𝕜(𝑉 , 𝖵𝖾𝖼𝗍𝕜(𝑊 , 𝑋)))
≅ Tril(𝑈 , 𝑉 ,𝑊 ; 𝑋)

and similarly

𝖵𝖾𝖼𝗍𝕜((𝑈 ⊗𝕜 𝑉 ) ⊗𝕜 𝑊,𝑋) ≅ Bil(𝑈 ⊗𝕜 𝑉 ,𝑊 ; 𝑋)
≅ 𝖵𝖾𝖼𝗍𝕜(𝑈 ⊗𝕜 𝑉 , 𝖵𝖾𝖼𝗍𝕜(𝑊 , 𝑋))
≅ Bil(𝑈 , 𝑉 ; 𝖵𝖾𝖼𝗍𝕜(𝑊 , 𝑋))
≅ 𝖵𝖾𝖼𝗍𝕜(𝑈 , 𝖵𝖾𝖼𝗍𝕜(𝑉 , 𝖵𝖾𝖼𝗍𝕜(𝑊 , 𝑋)))
≅ Tril(𝑈 , 𝑉 ,𝑊 ; 𝑋) .

All these isomorphisms are natural in 𝑈 , 𝑉 , 𝑊 and 𝑋 . The isomorphism of
functors

𝖵𝖾𝖼𝗍𝕜(𝑈 ⊗𝕜 (𝑉 ⊗𝕜 𝑊), −) ≅ Tril(𝑈 , 𝑉 ,𝑊 ; −)
≅ 𝖵𝖾𝖼𝗍𝕜((𝑈 ⊗𝕜 𝑉 ) ⊗𝕜 𝑊,−)

tells us that 𝑈 ⊗𝕜 (𝑉 ⊗𝕜 𝑊) ≅ (𝑈 ⊗𝕜 𝑉 ) ⊗𝕜 𝑊 .

83



Chapter 2 Universal Properties, Representability, and the Yoneda Lemma

Exercise 2.3.iii
The isomorphism

𝛼 ∶ 𝖲𝖾𝗍(−, 𝐵𝐴) ≅ 𝖲𝖾𝗍(− × 𝐴, 𝐵)
is explicitly given by

𝛼𝑋 (𝜑)(𝑥, 𝑎) = 𝜑(𝑥)(𝑎) (2.2)

for every set 𝑋 , every function 𝜑 ∶ 𝑋 → 𝐵𝐴 and all (𝑥, 𝑎) ∈ 𝑋 × 𝐴.
The universal element ev corresponding to the isomorphism 𝛼 is given

by 𝛼𝐵𝐴(1𝐵𝐴). It is thus an element of 𝖲𝖾𝗍(𝐵𝐴 × 𝐴, 𝐵), i.e., a map from 𝐵𝐴 × 𝐴
to 𝐵. It follows from the explicit formula (2.2) that this map is given by

ev(𝑓 , 𝑎) = 𝛼𝐵𝐴(1𝐵𝐴)(𝑓 , 𝑎) = 1𝐵𝐴(𝑓 )(𝑎) = 𝑓 (𝑎)

for all (𝑓 , 𝑎) ∈ 𝐵𝐴 ×𝐴. The map ev is thus given by evaluation of the first item
at the second item.

The Yoneda lemma tells us for the functor 𝐹 ≔ 𝖲𝖾𝗍(−×𝐴, 𝐵) that the entire
natural transformation 𝛼 ∶ 𝖲𝖾𝗍(−, 𝐵𝐴) ⇒ 𝐹 is uniquely determined by the
element ev of 𝐹(𝐵𝐴). More explicitly, 𝛼𝑋 (𝜑) = (𝐹𝜑)(ev) for every set 𝑋 , and
therefore

𝛼𝑋 (𝜑) = (𝐹𝜑)(ev) = ev ⋅ (𝜑 × 1𝐴) .
That 𝛼 is a natural isomorphism means that 𝛼𝑋 is bijective for every set 𝑋 . In
other words:

For every set 𝑋 and every element 𝑓 of 𝐹𝑋 there exists a unique
element 𝜑 of 𝖲𝖾𝗍(𝑋 , 𝐵𝐴) with 𝛼𝑋 (𝜑) = 𝑓 .

We can expand this condition as follows:

For every set𝑋 and everymap 𝑓 ∶ 𝑋×𝐴 → 𝐵, there exists a unique
map 𝜑 ∶ 𝑋 → 𝐵𝐴 such that 𝑓 (𝑐, 𝑎) = ev(𝜑(𝑐), 𝑎) for all (𝑐, 𝑎) ∈ 𝑋×𝐴,
i.e., such that the following diagram commutes:

𝑋 × 𝐴 𝐵

𝐵𝐴 × 𝐴

𝑓

𝜑×1𝐴 ev

84



2.4 The category of elements

2.4 The category of elements

Exercise 2.4.i
Let 𝖲 be the singleton category consisting of only a single object 𝑠 and its
identity morphism. Let 𝐶 be the functor from 𝖲 to 𝖲𝖾𝗍 corresponding to the
singleton set {∗}, i.e., the unique functor with 𝐶𝑠 = {∗}. The comma cate-
gory 𝐶 ↓ 𝐹 looks as follows:

• The objects of 𝐶 ↓ 𝐹 are triples of the form (𝑠, 𝑐, 𝜉 ) consisting of the
unique object 𝑠 of 𝖲, an object 𝑐 of 𝖢, and a map 𝑓 from the set 𝐶𝑠 = {∗}
to the set 𝐹𝑐.

• A morphism in 𝐶 ↓ 𝐹 from an object (𝑠, 𝑐, 𝜉 ) to an object (𝑠, 𝑐′, 𝜉 ′) is a
pair (𝑓0, 𝑓1) of morphisms 𝑓0∶ 𝑠 → 𝑠 in 𝖲 and 𝑓 ∶ 𝑐 → 𝑐′ in 𝖢 that makes
the following diagram commute:

{∗} 𝐹 𝑐

{∗} 𝐹 𝑐′

𝜉

𝐶𝑓0 𝐹𝑓1
𝜉 ′

The category 𝖲 has a single object and single morphism. This allows us
to simplify the comma category 𝐶 ↓ 𝐹 by replacing it with the following
isomorphic category 𝖣:

• The objects of 𝖣 are pairs (𝑐, 𝜉 ) consisting of an object 𝑐 of 𝖢 and a
map 𝜉 ∶ {∗} → 𝐹𝑐.

• A morphism in 𝖣 from another object (𝑐, 𝜉 ) to an object (𝑐′, 𝜉 ′) is a mor-
phism 𝑓 ∶ 𝑐 → 𝑐′ in 𝖢 that makes the following diagram commute:

{∗} 𝐹 𝑐

{∗} 𝐹 𝑐′

𝜉

1{∗} 𝐹𝑓
𝜉 ′

(2.3)

A map 𝜉 ∶ {∗} → 𝐹𝑐 is the same as an element of 𝐹𝑐, namely the ele-
ment 𝜉 (∗). The commutativity of the square diagram (2.3) is then equiv-
alent to the condition (𝐹𝑓 )(𝑥) = 𝑥′ for the respective elements 𝑥 = 𝜉 (∗)
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and 𝑥′ = 𝜉 ′(∗). The category 𝖣 can therefore be replaced by the following
isomorphic category 𝖤:

• The objects of 𝖤 are pairs (𝑐, 𝑥) consisting of an object 𝑐 of 𝖢 and an
element 𝑥 of the associated set 𝐹𝑐.

• A morphism in 𝖤 from an object (𝑐, 𝑥) to another object (𝑐′, 𝑥′) is a mor-
phism 𝑓 ∶ 𝑐 → 𝑐′ in 𝖢 such that (𝐹𝑓 )(𝑥) = 𝑥′.

The category 𝖤 is precisely the category of elements ∫𝐹 , so that overall

∗ ↓ 𝐹 ≅ 𝖣 ≅ 𝖤 = ∫𝐹 .

Exercise 2.4.ii
Let 𝖢 be a category and let 𝑐 be an object of 𝖢.

One terminal object of𝖢/𝑐 is given by (𝑐, 1𝑐). Indeed, for every object (𝑥, 𝑓 )
of 𝖢/𝑐 there exists a unique morphism from 𝑥 to 𝑐 that makes the diagram

𝑥 𝑐

𝑐
𝑓 1𝑐

commute, namely the morphism 𝑓 itself.
It follows that an object (𝑥, 𝑓 ) of 𝖢/𝑐 is terminal in 𝖢/𝑐 if and only if

it is isomorphic to the object (𝑐, 1𝑐). This is the case if and only if there
exists morphisms 𝜑 ∶ (𝑥, 𝑓 ) → (𝑐, 1𝑐) and 𝜓 ∶ (𝑐, 1𝑐) → (𝑥, 𝑓 ) in 𝖢/𝑐 such
that 𝜓𝜑 = 1(𝑐,1𝑐) and 𝜑𝜓 = 1(𝑥,𝑓 ). This means that 𝜑 and 𝜓 are morphisms
in 𝖢, namely 𝜑 ∶ 𝑥 → 𝑐 and 𝜓 ∶ 𝑐 → 𝑥 , such that the diagrams

𝑥 𝑐

𝑐

𝜑

𝑓 1𝑐
and

𝑐 𝑥

𝑐

𝜓

1𝑐 𝑓

commute, and such that 𝜑𝜓 = 1𝑐 and 𝜓𝜑 = 1𝑥 in 𝖢. The commutativity of
the first diagram is equivalent to the condition 𝜑 = 𝑓 , and the commutativity
of the second diagram is equivalent to the condition 𝑓 𝜓 = 1𝑐 . We find that 𝜑
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must be equal to 𝑓 and that 𝜓 must be a two-sided inverse to 𝑓 . Consequently,
such morphisms 𝜑 and 𝜓 exist if and only if 𝑓 is an isomorphism in 𝖢.

This shows that the terminal objects in𝖢/𝑐 are precisely those objects (𝑥, 𝑓 )
for which the morphism 𝑓 in 𝖢 is an isomorphism in 𝖢. Therefore, roughly
speaking, the terminal objects in 𝖢/𝑐 are the ways in which the object 𝑐 is
isomorphic to another object of 𝖢.

Exercise 2.4.iii
Let 𝐹 be a contravariant functor from a category 𝖢 to the category 𝖲𝖾𝗍. We
may regard 𝐹 as a covariant functor 𝐺 from 𝖢op to 𝖲𝖾𝗍. We then have the
sequence of equivalences

the contravariant functor 𝐹 is representable
⟺ the covariant functor 𝐺 is representable
⟺ the category ∫𝐺 admits an initial object
⟺ the category (∫𝐹)op admits an initial object
⟺ the category ∫𝐹 admits a terminal object .

For the second to last equivalence we used that ∫𝐹 is defined as (∫𝐺)op.
One can refine the above argumentation to get the following result:

Let 𝐹 be a contravariant functor from a category 𝖢 to 𝖲𝖾𝗍. An
element 𝑥 of a set 𝐹𝑐, where 𝑐 is some object of 𝖢, is a universal
element for 𝐹 if and only if (𝑐, 𝑥) is terminal in ∫𝐹 .

Exercise 2.4.iv
Let Ω be the Sierpiński space, consisting of the two elements ⊤ and ⊥ and
three open subsets ∅, {⊤} and Ω.

Let O be the contravariant functor from 𝖳𝗈𝗉 to 𝖲𝖾𝗍 that assigns to each
topological space its set of open subsets. We find that

{
there exists for every topological space 𝑋
and every open subset 𝑈 of 𝑋
a unique continuous map 𝜒 from 𝑋 to Ω with 𝑈 = 𝜒−1({⊤})

⟺ { there exists for every object 𝑋 of 𝖳𝗈𝗉 and every element 𝑈 of O(𝑋)
a unique morphism 𝜒 ∶ 𝑋 → Ω in 𝖳𝗈𝗉 with 𝑈 = O(𝜒)({⊤})
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Chapter 2 Universal Properties, Representability, and the Yoneda Lemma

We know that the first condition holds true, so the second condition also
holds true. But the second condition tells us that the element {⊤} of O(Ω)
is a universal element for the functor 𝐹 . In this sense, the open subset {⊤}
of Ω is the universal open subset. In a weaker sense, this means that Ω is the
universal topological space with an open subset.

Exercise 2.4.v
The objects of ∫𝐹 are pairs (𝑋 , ≤) consisting of a set 𝑋 together with a pre-
order ≤ on 𝑋 . In other words, the objects of ∫𝐹 are preordered sets.

A morphism 𝑓 ∶ (𝑋 , ≤𝑋 ) → (𝑌 , ≤𝑌 ) is a map 𝑓 ∶ 𝑋 → 𝑌 such that ≤𝑋 is
the pullback of ≤𝑌 along 𝑓 . In other words, the preorders ≤𝑋 and ≤𝑌 and the
map 𝑓 need to satisfy the compatibility condition

𝑥 ≤𝑋 𝑥′ ⟺ 𝑓(𝑥) ≤𝑌 𝑓 (𝑥′)
for all 𝑥, 𝑥′ ∈ 𝑋 . (This entails that the map 𝑓 is increasing with respect to the
preorders ≤𝑋 and ≤𝑌 .)

We claim that the functor 𝐹 is not representable.
To prove this claim, we note that for every preorder ≤ on a set 𝑋 we have

an associated equivalence relation ∼ given by

𝑥 ∼ 𝑥′ ⟺ (𝑥 ≤ 𝑥′ and 𝑥′ ≤ 𝑥) .
We call the number of equivalence classes of this equivalence relation the
order size of ≤, and denote it by size(𝑋 , ≤), or simply by size(𝑋).

The order size of a preorder tells how many elements can be at most dis-
tinguished by that preorder. Consequently, if a preorder on a set 𝑋 is the
pullback of a preorder on a set 𝑌 via a map 𝑓 ∶ 𝑋 → 𝑌 , then

size(𝑋) ≤ size(𝑌 ) .
Suppose that the functor 𝐹 were representable by an object 𝑅 and a uni-

versal element ≤𝑅. This would mean that there exists for every preordered
set (𝑋 , ≤𝑋 ) a unique function 𝑓 ∶ 𝑋 → 𝑅 such that ≤𝑋 is the pullback of ≤𝑅
along 𝑓 . This then entails that the order size of every preordered set 𝑋 would
be bound by that of the representing object:

size(𝑋) ≤ size(𝑅)
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for every preordered set 𝑋 and the representing preordered set 𝑅. To show
that the functor 𝐹 is not representable it therefore suffices to show that for
any arbitrarily large cardinal number 𝜅 there exists a preordered set whose
order size at least 𝜅.

We can consider for every set 𝑋 the discrete preorder on 𝑋 , for which no
two distinct elements are comparable. The order size of 𝑋 is then its cardi-
nality. As there are sets of arbitrarily large cardinality, we find that there are
preordered sets of arbitrarily large order size.

Exercise 2.4.vi
We denote the category of elements of the functor Hom by 𝖤, i.e.,

𝖤 ≔ ∫Hom .
The category 𝖤 looks as follows:

• The objects of 𝖤 are pairs ((𝑐, 𝑑), 𝑓 ) consisting of an object (𝑐, 𝑑) of𝖢op×𝖢
and an element 𝑓 of Hom(𝑐, 𝑑).

• A morphism 𝜑 in 𝖤 from an object ((𝑐, 𝑑), 𝑓 ) to an object ((𝑐′, 𝑑′), 𝑓 ′) is a
morphism 𝜑 ∶ (𝑐, 𝑑) → (𝑐′, 𝑑′) in𝖢op×𝖢 such thatHom(−, −)(𝜑)(𝑓 ) = 𝑓 ′.

We can simplify this description of 𝖤 by unraveling the structure of 𝖢op×𝖢
and of the bifunctor Hom. We then arrive at the following category 𝖳:

• The objects of 𝖳 are triples (𝑐, 𝑓 , 𝑑) consisting of two objects 𝑐 and 𝑑 of 𝖢
and a morphism 𝑓 ∶ 𝑐 → 𝑑 in 𝖢.

• A morphism in 𝖳 from an object (𝑐, 𝑓 , 𝑑) to another object (𝑐′, 𝑓 ′, 𝑑′)
is a pair (𝜑, 𝜓 ) of morphisms 𝜑 ∶ 𝑐′ → 𝑐 and 𝜓 ∶ 𝑑 → 𝑑′ in 𝖢 such
that 𝜓𝑓 𝜑 = 𝑓 ′, i.e., such that the following square diagram commutes:

𝑐 𝑑

𝑐′ 𝑑′

𝑓

𝜑𝜓
𝑓 ′

(2.4)

The objects in 𝖳 are thus themorphisms in𝖢, and amorphism in 𝖳 between
two morphisms 𝑓 and 𝑓 ′ in 𝖢 is a commutative diagram of the form (2.4). In
this diagram, the morphism 𝑓 ′ arises from themorphism 𝑓 by “twisting” with
the two morphisms 𝜑 and 𝜓 .
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Exercise 2.4.vii
We will use the following observations:

Lemma 2.E. Let 𝖢 be a category and let (𝖣, Π) and (𝖣′, Π′) be two categories
over𝖢, i.e., two objects of 𝖢𝖠𝖳/𝖢, for which the functor Π′ is faithful. For ev-
ery object 𝑑 of𝖣 let 𝐹𝑑 be an object of𝖣′, and for every morphism 𝑓 ∶ 𝑑 → 𝑑′
in 𝖣 let 𝐹𝑓 be a morphism in 𝖣′ from 𝐹𝑑 to 𝐹𝑑′. If the diagram

𝖣 𝖣′

𝖢

𝐹

Π Π′
(2.5)

commutes, then 𝐹 is a functor, and more specifically a morphism from (𝖣, Π)
to (𝖣′, Π′) in 𝖢𝖠𝖳/𝖢.

Proof. It remains to show the functoriality of 𝐹 . We hence need to show that

𝐹1𝑑 = 1𝐹𝑑 and 𝐹(𝑔𝑓 ) = 𝐹𝑔 ⋅ 𝐹𝑓
for every object 𝑑 of 𝖣, and for every two composable morphisms 𝑓 ∶ 𝑑 → 𝑑′
and 𝑔 ∶ 𝑑′ → 𝑑″ in 𝖣. As Π′ is faithful, these two conditions are equivalent
to the conditions

Π′𝐹1𝑑 = Π′1𝐹𝑑 and Π′𝐹(𝑔𝑓 ) = Π′(𝐹𝑔 ⋅ 𝐹𝑓 ) .
By the functoriality of Π′ we can rewrite these two equations as follows:

Π′𝐹1𝑑 = 1Π′𝐹𝑑 and Π′𝐹(𝑔𝑓 ) = Π′𝐹𝑔 ⋅ Π′𝐹𝑓 .
By the commutativity of the diagram (2.5) we can now simplify these two
equations to

Π1𝑑 = 1Π𝑑 and Π(𝑔𝑓 ) = Π𝑔 ⋅ Π𝑓 .
These final equations are satisfied by the functoriality of Π. ∎

Let 𝖢 be a category. For every functor 𝐹 from 𝖢 to 𝖲𝖾𝗍 we denote its cat-
egory of elements by ∫𝐹 , and the forgetful functor from ∫𝐹 to 𝖢 by Π𝐹 . The
pair (∫𝐹 , Π𝐹 ) is an object of the slice category 𝖢𝖠𝖳/𝖢.
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Let 𝐹 , 𝐺 ∶ 𝖢 → 𝖲𝖾𝗍 be two functors and let 𝛼 ∶ 𝐹 ⇒ 𝐺 be a natural trans-
formation. The natural transformation 𝛼 induces a functor

∫𝛼 ∶ ∫𝐹 ⟶ ∫𝐺
as follows:

• Let (𝑐, 𝑥) be an object of ∫𝐹 . This means that 𝑐 is an object of 𝖢 and 𝑥 is an
element of the set 𝐹𝑐. The component 𝛼𝑐 of the transformation 𝛼 is a map
from 𝐹𝑐 to 𝐺𝑐, whence

(∫𝛼)(𝑐, 𝑥) ≔ (𝑐, 𝛼𝑐(𝑥))
is an object of ∫𝐺.

• Let 𝑓 ∶ (𝑐, 𝑥) → (𝑐′, 𝑥′) be a morphism in ∫𝐹 . This means that 𝑓 is a mor-
phism in 𝖢 from 𝑐 to 𝑐′ with (𝐹𝑓 )(𝑥) = 𝑥′. We have the following commu-
tative square diagram by the naturality of 𝛼 :

𝐹𝑐 𝐹 𝑐′

𝐺𝑐 𝐺𝑐′

𝐹𝑓

𝛼𝑐 𝛼𝑐′
𝐺𝑓

The commutativity of this diagram tells us that

(𝐺𝑓 )(𝛼𝑐(𝑥)) = 𝛼𝑐′((𝐹𝑓 )(𝑥)) = 𝛼𝑐′(𝑥′) ,
whence 𝑓 is a morphism from (𝑐, 𝛼𝑐(𝑥)) to (𝑐′, 𝛼𝑐′(𝑥′)). In other words, 𝑓 is
a morphism from (∫𝛼)(𝑐, 𝑥) to (∫𝛼)(𝑐′, 𝑥′). We therefore define

(∫𝛼)((𝑐, 𝑥) 𝑓−−−−→ (𝑐′, 𝑥′)) ≔ ((𝑐, 𝛼𝑐(𝑥))
𝑓−−−−→ (𝑐′, 𝛼𝑐′(𝑥′))) .

For simplicity, we will simply write

(∫𝛼)(𝑓 ) = 𝑓 ,
not keeping track of the change in domain and codomain. This greatly
improves readability, at the minor cost of some rigour.
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• The diagram

∫𝐹 ∫𝐺

𝖢

∫𝛼

Π𝐹 Π𝐺
(2.6)

commutes, whence it follows from Lemma 2.E that ∫𝛼 is a functor from ∫𝐹
to ∫𝐺.
It remains to show that this induced functor ∫𝛼 is itself functorial in 𝛼 .

• We need to show that ∫1𝐹 = 1(∫𝐹). This holds true because

(∫1𝐹 )(𝑐, 𝑥) = (𝑐, (1𝐹 )𝑐(𝑥)) = (𝑐, 1𝐹𝑐(𝑥)) = (𝑐, 𝑥) ,
for every object (𝑐, 𝑥) of ∫𝐹 , as well as

(∫1𝐹 )(𝑓 ) = 𝑓
for every morphism 𝑓 in ∫𝐹 .

• We need to show that ∫(𝛽 ⋅ 𝛼) = ∫𝛽 ⋅ ∫𝛼 for every two composable natural
transformations 𝛼 ∶ 𝐹 ⇒ 𝐺 and 𝛽 ∶ 𝐺 ⇒ 𝐻 .This holds true because

(∫𝛽)(∫𝛼)(𝑐, 𝑥) = (∫𝛽)(𝑐, 𝛼𝑐(𝑥))
= (𝑐, 𝛽𝑐(𝛼𝑐(𝑥)))
= (𝑐, (𝛽 ⋅ 𝛼)𝑐(𝑥))
= (∫(𝛽 ⋅ 𝛼))(𝑐, 𝑥)

for every object (𝑐, 𝑥) of ∫𝐹 , as well as

(∫𝛽)(∫𝛼)𝑓 = (∫𝛽)𝑓 = 𝑓 = (∫(𝛽 ⋅ 𝛼))𝑓
for every morphism 𝑓 in ∫𝐹 .
We have overall extended the construction ∫ to a functor from the functor

category 𝖲𝖾𝗍𝖢 to the slice category 𝖢𝖠𝖳/𝖢. This entails that isomorphic ob-
jects of 𝖲𝖾𝗍𝖢 are mapped to isomorphic objects of 𝖢𝖠𝖳/𝖢. More explicitly,
if 𝐹 , 𝐺 ∶ 𝖢 → 𝖲𝖾𝗍 are two isomorphic functors, then the two categories ∫𝐹
and ∫𝐺 are isomorphic over 𝖢.
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Exercise 2.4.viii
For this exercise we denote the morphisms in ∫𝐹 as quintuples (𝑐, 𝑥, 𝑓 , 𝑑, 𝑦)
consisting of two objects 𝑐 and 𝑑 of 𝖢, elements 𝑥 of 𝐹𝑐 and 𝑦 of 𝐹𝑑 , and a
morphism 𝑓 ∶ 𝑐 → 𝑑 in 𝖢 with (𝐹𝑓 )(𝑥) = 𝑦 . Pictorially,

𝐹𝑐 ∋ 𝑥 𝐹𝑓−−−−−→ 𝑦 ∈ 𝐹𝑑 .
Such a quintuple (𝑐, 𝑥, 𝑓 , 𝑑, 𝑦) is a morphism from (𝑐, 𝑥) to (𝑑, 𝑦) in ∫𝐹 .

Let 𝜑 = (𝜑1, 𝜑2, 𝜑3, 𝜑4, 𝜑5) be a morphism in ∫𝐹 . We make the following
observations:

• That 𝜑 is a lift of 𝑓 along Π is equivalent to the equalities 𝜑1 = 𝑐, 𝜑4 = 𝑑
and 𝜑3 = 𝑓 .

• That the domain of 𝜑 is (𝑐, 𝑥) is equivalent to the two equalities 𝜑1 = 𝑐
and 𝜑2 = 𝑥 .

• The last entry 𝜑5 is uniquely determined by the previous entries 𝜑2 and 𝜑3
as 𝜑5 = (𝐹𝜑3)(𝜑2).

Combining all of these observations, we see that (𝑐, 𝑥, 𝑓 , 𝑑, (𝐹𝑓 )(𝑥)) is the
unique lift of 𝑓 along Π whose domain is (𝑐, 𝑥).

Exercise 2.4.ix
We have the following definition of a discrete right fibration:

A functor Π∶ 𝖤 → 𝖡 is a discrete right fibration if for every mor-
phism 𝑓 ∶ 𝑐 → 𝑑 in 𝖡 and every object 𝑒 in the fibre over 𝑑 there
exists a unique lift of 𝑓 along Π with codomain 𝑒.

Exercise 2.4.x
For the functor 𝖢(𝐴, −) × 𝖢(𝐵, −) to be representable we need the existence
of an object 𝐶 of 𝖢 such that

𝖢(𝐶, −) ≅ 𝖢(𝐴, −) × 𝖢(𝐵, −) .
We can also characterize such an isomorphism in terms of its universal ele-
ment (𝑖, 𝑗) ∈ 𝖢(𝐴, 𝐶) ×𝖢(𝐵, 𝐶): we would need an object 𝐶 of 𝖢 together with
two morphisms

𝑖∶ 𝐴 ⟶ 𝐶 , 𝑗 ∶ 𝐵 ⟶ 𝐶
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such that for every object 𝑋 of 𝖢 and every two morphisms 𝑓 ∶ 𝐴 → 𝑋
and 𝑔 ∶ 𝐵 → 𝑋 there exists a unique morphism ℎ∶ 𝐶 → 𝑋 with 𝑓 = ℎ𝑖
and 𝑔 = ℎ𝑗:

𝐴 𝐵

𝐶

𝑋

𝑖

𝑓

𝑗

𝑔
ℎ
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Chapter 3

Limits and Colimits

3.1 Limits and colimits as universal cones

Exercise 3.1.i
The action of Cone(−, 𝐹) on morphisms

A cone over 𝐹 with summit 𝑐, where 𝑐 is some object in𝖢, is a family (𝜆𝑗)𝑗∈𝖩 of
morphism 𝜆𝑗 ∶ 𝑐 → 𝐹𝑗 subject to the commutativity of the triangular diagram

𝑐

𝐹 𝑗 𝐹𝑘

𝜆𝑗 𝜆𝑘

𝐹𝑢

for every morphism 𝑢∶ 𝑗 → 𝑘 in 𝖩. For every morphism 𝑓 ∶ 𝑐 → 𝑑 in 𝖢 we
have therefore the induced map

𝑓 ∗∶ Cone(𝑑, 𝐹 ) ⟶ Cone(𝑐, 𝐹 ) , (𝜇𝑗)𝑗∈𝖩 ⟼ (𝜇𝑗𝑓 )𝑗∈𝖩 .
This map is well-defined since in the diagram

𝑐

𝑑

𝐹 𝑗 𝐹𝑘

𝑓
𝜇𝑗𝑓 𝜇𝑘𝑓

𝜇𝑗 𝜇𝑘

𝐹𝑢
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the outer triangle commutes if the lower inner triangle commutes. (Intu-
itively speaking, we are pulling back the legs 𝜆 along 𝑓 .)

The action of Cone(𝐹 , −) on morphisms

The action of Cone(𝐹 , −) on morphisms is similarly given by

𝑓∗∶ Cone(𝐹 , 𝑐) ⟶ Cone(𝐹 , 𝑑) , (𝜆𝑗)𝑗∈𝖩 ⟼ (𝑓𝜆𝑗)𝑗∈𝖩

for every morphism 𝑓 ∶ 𝑐 → 𝑑 in 𝖢. (Intuitively speaking, we are pushing the
legs 𝜆 forward along 𝑓 .)

Exercise 3.1.ii

Given an object 𝑐 of 𝖢, an element of the set Cone(𝑐, 𝐹 ) is a family (𝜆𝑗)𝑗∈𝖩
of morphisms 𝜆𝑗 ∶ 𝑐 → 𝐹𝑗, subject to the commutativity of the triangular
diagram

𝑐

𝐹 𝑗 𝐹𝑘

𝜆𝑗 𝜆𝑘

𝐹𝑢

for every morphism 𝑢∶ 𝑗 → 𝑘 in 𝖩.
An element 𝛼 of the setHom(Δ(𝑐), 𝐹 ) is a natural transformation from Δ(𝑐)

to 𝐹 . More explicitly, 𝛼 = (𝛼𝑗)𝑗∈𝐽 is a family of morphisms 𝛼𝑗 ∶ Δ(𝑐)(𝑗) → 𝐹𝑗
such that the square diagram

Δ(𝑐)(𝑗) Δ(𝑐)(𝑘)

𝐹 𝑗 𝐹𝑘

Δ(𝑐)(𝑢)

𝛼𝑗 𝛼𝑘
𝐹𝑢

commutes for every morphism 𝑢∶ 𝑗 → 𝑘 in the index category 𝐽 . But we
know that Δ(𝑐)(𝑗) = 𝑐 for every object 𝑗 of 𝖩, and that Δ(𝑐)(𝑢) = 1𝑐 for every
morphism 𝑢 in 𝐽 . The above square diagram can therefore be simplified as
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follows:
𝑐 𝑐

𝐹 𝑗 𝐹𝑘

1𝑐

𝛼𝑗 𝛼𝑘
𝐹𝑢

This square diagram commutes if and only if the following triangular diagram
commutes:

𝑐

𝐹 𝑗 𝐹𝑘

𝛼𝑗 𝛼𝑘

𝐹𝑢

We find that 𝛼 the family 𝛼 is a natural transformation from Δ(𝑐) to 𝐹 if and
only if it is a cone on 𝐹 with summit 𝑐. In other words, we have an equality
of sets

Hom(Δ(𝑐), 𝐹 ) = Cone(𝑐, 𝐹 ) .1 (3.1)

It remains to check that the equality (3.1) is natural in 𝑐. In other words, we
need to check that for every morphism 𝑓 ∶ 𝑐 → 𝑑 in 𝖢 the following square
diagram commutes:

Cone(𝑑, 𝐹 ) Cone(𝑐, 𝐹 )

Hom(Δ(𝑑), 𝐹 ) Hom(Δ(𝑐), 𝐹 )

𝑓 ∗

Δ(𝑓 )∗

• The map 𝑓 ∗ is given on every cone (𝜆𝑗)𝑗 by
𝑓 ∗((𝜆𝑗)𝑗) = (𝜆𝑗𝑓 )𝑗 .

• The map Δ(𝑓 )∗ is given on every natural transformation 𝛼 = (𝛼𝑗)𝑗 by the
components

(Δ(𝑓 )∗(𝛼))𝑗 = (𝛼 ⋅ Δ(𝑓 ))𝑗 = 𝛼𝑗 ⋅ Δ(𝑓 )𝑗 = 𝛼𝑗𝑓 ,
so that in total

Δ(𝑓 )∗((𝛼𝑗)𝑗) = (𝛼𝑗𝑓 )𝑗 .
We see that both maps coincide, as required.

1This shows that the two definitions of Cone(𝑐, 𝐹 ) provided in Definition 3.1.2 coincide.
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Exercise 3.1.iii

Cones over 𝐹
The category 𝖢𝗈𝗇𝖾𝗌(𝐹) of cones over 𝐹 is defined as a category of elements
of the contravariant functor Cone(−, 𝐹). This category therefore looks as
follows:

• The objects of 𝖢𝗈𝗇𝖾𝗌(𝐹) are pairs (𝑐, 𝜆) consisting of an object 𝑐 of 𝖢 and
a cone 𝜆 = (𝜆𝑗)𝑗 over 𝐹 with summit 𝑐. This means that each 𝜆𝑗 is a
morphism from 𝑐 to 𝐹 𝑗, subject to the commutativity of the triangular
diagram

𝑐

𝐹 𝑗 𝐹𝑘

𝜆𝑗 𝜆𝑘

𝐹𝑢

for every morphism 𝑢∶ 𝑗 → 𝑘 in 𝖩.
• A morphism in 𝖢𝗈𝗇𝖾𝗌(𝐹) from a cone (𝑐, 𝜆) to a cone (𝑑, 𝜇) is a mor-
phism 𝑓 ∶ 𝑐 → 𝑑 in 𝖢 such that the triangular diagram

𝑐 𝑑

𝐹 𝑗

𝑓

𝜆𝑗 𝜇𝑗

commutes for every object 𝑗 of 𝖩. In other words, we have for the induced
map

𝑓 ∗∶ Cone(𝑑, 𝐹 ) ⟶ Cone(𝑐, 𝐹 ) , (𝜈𝑗)𝑗 ⟼ (𝜈𝑗𝑓 )𝑗
the equality 𝜆 = 𝑓 ∗(𝜇).

The category Δ ↓ 𝐹 , on the other hand, looks as follows:

• The objects of Δ ↓ 𝐹 are pairs (𝑐, 𝛼) consisting of an object 𝑐 of 𝖢 and a
natural transformation 𝛼 ∶ Δ(𝑐) ⇒ 𝐹 .
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3.1 Limits and colimits as universal cones

• A morphism in Δ ↓ 𝐹 from an object (𝑐, 𝛼) to an object (𝑑, 𝛽) is a mor-
phism 𝑓 ∶ 𝑐 → 𝑑 in 𝖢 such that the following triangular diagram com-
mutes:

Δ(𝑐) Δ(𝑑)

𝐹

Δ(𝑓 )

𝛼 𝛽

That is, we have the equality 𝛼 = Δ(𝑓 )∗(𝛽).
We have already seen in our solution to the previous exercise (Exercise 3.1.ii)
that objects of 𝖢𝗈𝗇𝖾𝗌(𝐹) are the same as objects of Δ ↓ 𝐹 , as a family 𝜆 = (𝜆𝑗)𝑗
is a cone over 𝐹 with summit 𝑐 if and only if 𝜆 is a natural transformation
from Δ(𝑐) to 𝐹 .

Let (𝑐, 𝜆) and (𝑑, 𝜇) be two objects of the two categories, and let 𝑓 ∶ 𝑐 → 𝑑 be
a morphism in 𝖢. We have also seen in our solution to the previous exercise
that the two induced maps

𝑓 ∗∶ Cone(𝑑, 𝐹 ) ⟶ Cone(𝑐, 𝐹 )

and
Δ(𝑓 )∗∶ Hom(Δ(𝑑), 𝐹 ) ⟶ Hom(Δ(𝑐), 𝐹 )

are equal. We have consequently the sequence of equivalences

𝑓 is a morphism from (𝑐, 𝜆) to (𝑑, 𝜇) in 𝖢𝗈𝗇𝖾𝗌(𝐹)
⟺ 𝜆 = 𝑓 ∗(𝜇)
⟺ 𝜆 = Δ(𝑓 )∗(𝜇)
⟺ 𝑓 is a morphism from (𝑐, 𝜆) to (𝑑, 𝜇) in Δ ↓ 𝐹 .

This shows that not only are the objects of 𝖢𝗈𝗇𝖾𝗌(𝐹) and Δ ↓ 𝐹 equal, but
also their morphisms.

Consequently, the categories 𝖢𝗈𝗇𝖾𝗌(𝐹) and Δ ↓ 𝐹 are equal.

Cocones under 𝐹
We can show in the same way that the category of cocones under 𝐹 is equal
to the comma category 𝐹 ↓ Δ.
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Exercise 3.1.iv
We simply rewrite the first proof in a more elaborate way.

The universal property of a limit cone (ℓ, 𝜆) over 𝐹 asserts that for every
other cone (𝑑, 𝜇) over 𝐹 , there exists a unique morphism of cones 𝑓 from (𝑑, 𝜇)
to (ℓ, 𝜆). The cone (ℓ′, 𝜆′) satisfies the same universal property: there exists
for every cone (𝑑, 𝜇) on 𝐹 a uniquemorphism of cones 𝑓 ′ from (𝑑, 𝜇) to (ℓ′, 𝜆′).

It follows is particular that there exists a unique morphism of cones 𝑓
from (ℓ, 𝜆) to (ℓ′, 𝜆′), as well as a unique morphism of cones 𝑓 ′ from (ℓ′, 𝜆′)
to (ℓ, 𝜆). The composite 𝑓 ′𝑓 is a morphism of cones from (ℓ, 𝜆) to itself. But
by the universal property of (ℓ, 𝜆), there exists precisely one such morphism,
and 1(ℓ,𝜆) is also such a morphism. Consequently,

𝑓 ′𝑓 = 1(ℓ,𝜆) .

We find in the same way that also 𝑓 𝑓 ′ = 1(ℓ′,𝜆′).
We have seen that there exists a unique morphism of cones from (ℓ, 𝜆)

to (ℓ′, 𝜆′), and that this morphism is an isomorphism. This entails that ℓ and ℓ′
are isomorphic as objects in 𝖢, and that there exists precisely one such iso-
morphism compatible with the cones 𝜆 and 𝜆′.

Exercise 3.1.v
The general definition of a cone over 𝐹 is as follows:

A cone over 𝐹 with summit 𝑝, where 𝑝 is some object in 𝖯, is a
family (𝜆𝑗)𝑗∈𝖩 of morphisms 𝜆𝑗 ∶ 𝑝 → 𝐹𝑗 with 𝑗 ∈ 𝖩, subject to the
commutativity of the triangular diagram

𝑝

𝐹 𝑗 𝐹𝑘

𝜆𝑗 𝜆𝑘

𝐹𝑢

for every morphism 𝑢∶ 𝑗 → 𝑘 in 𝖩.
The category 𝖯 is a poset, whence every diagram in 𝖯 commutes. We can

therefore simplify the above definition:
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A cone over 𝐹 with summit 𝑝, where 𝑝 is some object in 𝖯, is a
family (𝜆𝑗)𝑗∈𝖩 of morphisms 𝜆𝑗 ∶ 𝑝 → 𝐹𝑗 with 𝑗 ∈ 𝖩.

There exists for every object 𝑝 of 𝖯 at most one morphism from 𝑝 to 𝐹 𝑗
in 𝖯, and this morphism exists if and only if 𝑝 ≤ 𝐹𝑗. We therefore find the
following:

Let 𝑝 be an object of 𝖯. There exists a cone on 𝐹 with summit 𝑝 if
and only if 𝑝 ≤ 𝐹𝑗 for every 𝑗 ∈ 𝖩. This cone is then unique.

Suppose now that 𝑝 and 𝑝′ are two summits of cones over 𝐹 . Every mor-
phism from 𝑝 to 𝑝′ is then automatically a morphism of cones, because every
diagram in 𝖯 commutes. Consequently, there exists a morphism of cones
from 𝑝 to 𝑝′ if and only if there exists a morphism from 𝑝 to 𝑝′ in 𝖯, which
is the case if and only if 𝑝 ≤ 𝑝′. We thus find the following:

Let 𝑝 be an object of 𝖯with 𝑝 ≤ 𝐹𝑗 for every 𝑗 ∈ 𝖩, i.e., the summit
of a cone over 𝐹 . The cone determined by 𝑝 is a limit cone for 𝐹
if and only if for every other summit 𝑝′ we have 𝑝′ ≤ 𝑝.

In other words, a limit cone over 𝐹 is uniquely determined by its summit,
which is precisely a greatest lower bound for the objects 𝐹 𝑗 with 𝑗 ∈ 𝖩. The
limit of 𝐹 is thus the infimum of the elements 𝐹 𝑗 with 𝑗 ∈ 𝖩.

Dually, the colimit of 𝐹 is the supremum of the elements 𝐹 𝑗 with 𝑗 ∈ 𝖩.

Exercise 3.1.vi

The universal property of the equalizer tells us for every object 𝑋 of the am-
bient category 𝖢 that the map

ℎ∗∶ 𝖢(𝑋 , 𝐸) ⟶ 𝖢(𝑋,𝐴) , 𝑘 ⟼ ℎ𝑘

restricts to a bijection

𝖢(𝑋 , 𝐸) ⟶ {𝑙 ∈ 𝖢(𝑋 , 𝐴) | 𝑓 𝑙 = 𝑔𝑙} .

This entails that the map ℎ∗ is injective. That this injectivity holds for every
object 𝑋 of 𝖢 means precisely that the morphism ℎ is a monomorphism.
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Exercise 3.1.vii

Let 𝑙 , 𝑚∶ 𝑄 → 𝑃 be two morphisms in the ambient category 𝖢 with 𝑘𝑙 = 𝑘𝑚.
We then also have

𝑓 ℎ𝑙 = 𝑔𝑘𝑙 = 𝑔𝑘𝑚 = 𝑓 ℎ𝑚
by the commutativity of the pullback square, and thus ℎ𝑙 = ℎ𝑚 because 𝑓 is
a monomorphism. It follows from the two equalities

𝑘𝑙 = 𝑘𝑚 , ℎ𝑙 = ℎ𝑚

and the universal property of the pullback (𝑃, ℎ, 𝑘) that already 𝑙 = 𝑚.

Exercise 3.1.viii

We label the objects and morphisms in the given diagram as follows:

𝑐 𝑐′ 𝑐″

𝑑 𝑑′ 𝑑″

𝑓

ℎ

𝑓 ′

ℎ′
⌜

ℎ″

𝑔 𝑔′

We provide a diagram to keep track of the auxiliary morphisms that will be
introduced in our argumentations:

𝑥

𝑐 𝑐′ 𝑐″

𝑑 𝑑′ 𝑑″

𝑘

𝑙

𝑚

𝑝

𝑞

𝑓

ℎ

𝑓 ′

ℎ′
⌜

ℎ″

𝑔 𝑔′
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Suppose first that the left-hand square diagram is a pullback square. We
then have for every object 𝑥 of 𝖢 the sequence of bijections

{𝑘 | 𝑘 ∶ 𝑥 → 𝑐}
≅ {(𝑙, 𝑚) | 𝑙 ∶ 𝑥 → 𝑑 and 𝑚∶ 𝑥 → 𝑐′

with 𝑔𝑙 = ℎ′𝑚 }

≅ {(𝑙, 𝑝, 𝑞) | 𝑙 ∶ 𝑥 → 𝑑 , 𝑝∶ 𝑥 → 𝑑′ and 𝑞 ∶ 𝑥 → 𝑐″
with 𝑔𝑙 = 𝑝 and 𝑔′𝑝 = ℎ″𝑞 }

≅ {(𝑙, 𝑞) | 𝑙 ∶ 𝑥 → 𝑑 and 𝑞 ∶ 𝑥 → 𝑐″
with 𝑔′𝑔𝑙 = ℎ″𝑞 }

given by

𝑘 ⟼ (ℎ𝑘, 𝑓 𝑘) ⟼ (ℎ𝑘, ℎ′𝑓 𝑘, 𝑓 ′𝑓 𝑘) ⟼ (ℎ𝑘, 𝑓 ′𝑓 𝑘) .
This bijection tells us that the outer rectangular diagram is a pullback square.

Suppose now conversely that the outer rectangular diagram is a pullback
square. We then have for every object 𝑥 of 𝖢 the sequence of bijections

{𝑘 | 𝑘 ∶ 𝑥 → 𝑐}
≅ {(𝑙, 𝑞) | 𝑙 ∶ 𝑥 → 𝑑 and 𝑞 ∶ 𝑥 → 𝑐″

with 𝑔′𝑔𝑙 = ℎ″𝑞 }

≅ {(𝑙, 𝑝, 𝑞) | 𝑙 ∶ 𝑥 → 𝑑 , 𝑝∶ 𝑥 → 𝑑′ and 𝑞 ∶ 𝑥 → 𝑐″
with 𝑝 = 𝑔𝑙 and 𝑔′𝑝 = ℎ″𝑞 }

≅ {(𝑙, 𝑚) | 𝑙 ∶ 𝑥 → 𝑑 and 𝑚∶ 𝑥 → 𝑐′
with ℎ′𝑚 = 𝑔𝑙 and 𝑔′ℎ′𝑚 = ℎ″𝑓 ′𝑚 }

= {(𝑙, 𝑚) | 𝑙 ∶ 𝑥 → 𝑑 and 𝑚∶ 𝑥 → 𝑐′
with ℎ′𝑚 = 𝑔𝑙 } 2

given by
𝑘 ⟼ (ℎ𝑘, 𝑓 ′𝑓 𝑘) ⟼ (ℎ𝑘, 𝑔ℎ𝑘, 𝑓 ′𝑓 𝑘) ⟼ (ℎ𝑘, 𝑚)

where𝑚 is the uniquemorphism from 𝑥 to 𝑐′ with ℎ′𝑚 = 𝑔ℎ𝑘 and 𝑓 ′𝑚 = 𝑓 ′𝑓 𝑘.
The morphism 𝑓 𝑘 satisfies these defining equations of 𝑚, whence 𝑚 = 𝑓 𝑘.
The above bijection is thus overall given by

𝑘 ⟼ (ℎ𝑘, 𝑓 𝑘) .
2We can drop the condition 𝑔′ℎ′𝑚 = ℎ″𝑓 ′𝑚 since it follows from the commutativity of the

right-hand square.
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This overall bijection tells us that the left-hand square diagram is a pullback
square.

Exercise 3.1.ix
Cones and initial objects

Let 𝑖 be the initial object of 𝖩. There exists for every object 𝑗 of 𝖢 a unique
morphism 𝑢𝑗 from 𝑖 to 𝑗 in 𝖩. Let 𝜄𝑗 ≔ 𝐹𝑢𝑗 for every 𝑗 ∈ 𝖩, which is a morphism
in 𝖢 from 𝐹 𝑖 to 𝐹 𝑗. We claim that 𝜄 is a limit cone over 𝐹 with summit 𝐹 𝑖.

We first need to check that 𝜄 is a cone over 𝐹 with summit 𝐹 𝑖. To this end, we
need to check that for every morphism 𝑣 ∶ 𝑗 → 𝑘 in 𝖩 the following triangular
diagram commutes:

𝐹 𝑖

𝐹 𝑗 𝐹𝑘

𝜄𝑗 𝜄𝑘

𝐹𝑣

(3.2)

Given that 𝜄𝑗 = 𝐹𝑢𝑗 and 𝜄𝑘 = 𝐹𝑢𝑘 , this diagram is the image of the diagram

𝑖

𝑗 𝑘

𝑢𝑗 𝑢𝑘

𝑣

under the functor 𝐹 . This original diagram in 𝖩 commutes because there exists
exactly one morphism from 𝑖 to 𝑘 in 𝖩. It follows from the functoriality of 𝐹
that the original diagram (3.2) commutes.

We now need to check that (𝐹 𝑖, 𝜄) is a universal cone over 𝐹 . We need to
show that for every other cone (𝑐, 𝜆) over 𝐹 there exists a unique morphism
of cones 𝑓 from 𝜆 to 𝜄.

• We start with the uniqueness. Let 𝑓 be a morphism of cones from 𝜆 to 𝜄,
i.e., a morphism from 𝑐 to 𝐹 𝑖 for which the triangular diagram

𝑐 𝐹 𝑖

𝐹 𝑗

𝑓

𝜆𝑗 𝜄𝑗
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commutes for every object 𝑗 of 𝖩. We consider the case 𝑗 = 𝑖. The unique
morphism 𝑢𝑖 from 𝑖 to 𝑖 in 𝖩 is necessarily the identity morphism 1𝑖. Con-
sequently,

𝜄𝑖 = 𝐹𝑢𝑖 = 𝐹1𝑖 = 1𝐹 𝑖 ,
and thus

𝑓 = 1𝐹 𝑖𝑓 = 𝜄𝑖𝑓 = 𝜆𝑖 .
• For the existence, we now need to check that the morphism 𝜆𝑖, which
goes from 𝑐 to 𝐹 𝑖, is a morphism of cones from 𝜆 to 𝜄. To this end, we
need to check that the diagram

𝑐 𝐹 𝑖

𝐹 𝑗

𝜆𝑖

𝜆𝑗 𝜄𝑗

commutes for every 𝑗 ∈ 𝖩. This diagram can be rearranged as follows:

𝑐

𝐹 𝑖 𝐹 𝑗

𝜆𝑖 𝜆𝑗

𝐹𝑢𝑗

The commutativity of this diagram follows from 𝜆 being a cone over 𝐹 .
We have thus proven the following:

Let 𝖩 be a category with initial object 𝑖, let 𝖢 be another category
and let 𝐹 ∶ 𝖩 → 𝖢 be a diagram of shape 𝖩 in 𝖢. For every object 𝑗
of 𝖩 let 𝑢𝑗 be the unique morphism from 𝑖 to 𝑗. The family (𝐹𝑢𝑗)𝑗∈𝖩
is a limit cone over 𝐹 with summit 𝐹 𝑖.

Cocones and terminal objects

We can dualize the above result:

Let 𝖩 be a categorywith terminal object 𝑡 , let𝖢 be another category
and let 𝐹 be a diagram of shape 𝖩 in 𝖢. For every object 𝑗 of 𝖩 let 𝑣𝑗
be the uniquemorphism from 𝑗 to 𝑡 . The family (𝐹𝑣𝑗)𝑗∈𝖩 is a colimit
cone under 𝐹 with nadir 𝐹 𝑡 .
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Let now 𝛼 be a successor ordinal. This means that 𝛼 is the successor of
some other ordinal 𝛽 . The ordinal 𝛽 is an element of 𝛼 , and in fact is the
unique terminal object of the corresponding category α. Given a diagram 𝐹
in a category 𝖢 of shape α, its colimit is thus given by 𝐹𝛽 .

Exercise 3.1.x
Pullbacks are only well-defined up to isomorphism. In the given situation,
the two cones (ℤ, 𝑎, 𝑏) and (ℤ, −𝑎, −𝑏) are isomorphic via the isomorphism of
cones

ℤ ⟶ ℤ, 𝑥 ⟼ −𝑥 .
Thus, (ℤ, 𝑎, 𝑏) is a pullback for the given diagram if and only if (ℤ, −𝑎, −𝑏) is
one.

Exercise 3.1.xi
Let 𝖢 be a category such that for any two objects 𝑐 and 𝑑 of 𝖢 there exists a
morphism from 𝑐 to 𝑑 in 𝖢. Let (𝑐𝑗)𝑗∈𝐽 be a family of objects in 𝖢 that admits
a coproduct ∐𝑗∈𝐽 𝑐𝑗 , with structure morphisms 𝑖𝑘 ∶ 𝑐𝑘 → ∐𝑗∈𝐽 𝑐𝑗 for 𝑘 ∈ 𝐽 .

Let us fix an index 𝑘 ∈ 𝐽 . For every index 𝑙 ∈ 𝐽 there exists some mor-
phism 𝑟𝑙 from 𝑐𝑙 to 𝑐𝑘 in 𝖢, and we may choose 𝑟𝑘 as 1𝑐𝑘 . There exists by
assumption a unique morphism 𝑟 from ∐𝑗∈𝖩 𝑐𝑗 to 𝑐𝑘 with 𝑟 𝑖𝑙 = 𝑟𝑙 for every
index 𝑙 ∈ 𝐽 . This entails that

𝑟 𝑖𝑘 = 𝑟𝑘 = 1𝑐𝑘 ,
which tells us that 𝑖𝑘 is a split monomorphism.

Exercise 3.1.xii
This exercise is too hard for me.

Exercise 3.1.xiii
The coproduct of finitely many commutative rings 𝐴1, … , 𝐴𝑛 is their tensor
product 𝐴1⊗⋯⊗𝐴𝑛 over ℤ together with the canonical homomorphisms of
rings

𝐴𝑖 ⟶ 𝐴1 ⊗⋯ ⊗ 𝐴𝑛 , 𝑎 ⟼ 1 ⊗ ⋯ ⊗ 1 ⊗ 𝑎 ⊗ 1 ⊗ ⋯ ⊗ 1 .
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3.2 Limits in the category of sets

Exercise 3.2.i
We abbreviate the setsmor 𝐶 and ob 𝐶 as𝑀 and 𝑂 respectively. We have thus
two sets 𝑀 and 𝑂 and the functions

dom, codom∶ 𝑀 ⟶ 𝑂 , id∶ 𝑂 ⟶ 𝑀 .
The domain of the composition function is the set

{(𝑓 , 𝑔) ∈ 𝑀 × 𝑀 | codom 𝑓 = dom𝑔} ,
which can be described as the pullback of the following diagram:

𝑀

𝑀 𝑂
codom

dom
We thus denote this domain by 𝑀 ×𝑂 𝑀 , so that

comp∶ 𝑀 ×𝑂 𝑀 ⟶ 𝑀 , (𝑓 , 𝑔) ⟼ 𝑔𝑓
is the composition function.

We need to express in terms of diagrams the associativity of comp and that
identities act as neutral elements with respect to decomposition.

• To express the associativity of composition we need to introduce the triple-
pullback

𝑀 ×𝑂 𝑀 ×𝑂 𝑀 ≔ {(𝑓 , 𝑔, ℎ) ∈ 𝑀 × 𝑀 × 𝑀 | codom 𝑓 = dom𝑔 ,
codom𝑔 = domℎ } .

The associativity of comp can be expressed by the commutativity of the
following diagram:

𝑀 ×𝑂 𝑀 ×𝑂 𝑀 𝑀 ×𝑂 𝑀

𝑀 ×𝑂 𝑀 𝑀
comp×1

1×comp

comp

comp
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• We need for every object 𝑥 that 𝑥 is both the domain and the codomain
of 1𝑥 : This means that the following two diagrams have to commute:

𝑂 𝑀

𝑂

id

1 dom

𝑂 𝑀

𝑂

id

1 codom

This then ensures that we have well-defined maps

𝛼1∶ 𝑀 ⟶ 𝑀 ×𝑂 𝑀 , 𝑓 ⟼ (1dom 𝑓 , 𝑓 )

and

𝛼2∶ 𝑀 ⟶ 𝑀 ×𝑂 𝑀 , 𝑓 ⟼ (𝑓 , 1codom 𝑓 ) .
We need for the following two diagrams to commute:

𝑀 𝑀 ×𝑂 𝑀

𝑀

𝛼1

1 comp

𝑀 𝑀 ×𝑂 𝑀

𝑀

𝛼2

1 comp

Exercise 3.2.ii

In the proof of Theorem 3.2.13 we considered the condition

(𝐹𝑓 )(𝜆dom 𝑓 ) = 𝜆codom 𝑓

for every morphism 𝑓 in 𝖲𝖾𝗍. But this condition is trivially satisfied when-
ever 𝑓 = 1𝑥 for some object 𝑥 , since then

(𝐹𝑓 )(𝜆dom 𝑓 ) = (𝐹1𝑥)(𝜆dom1𝑥 ) = 1𝐹𝑥(𝜆𝑥) = 𝜆𝑥 = 𝜆codom1𝑥 = 𝜆codom 𝑓 .

In the product ∏𝑓 ∈mor 𝖩 𝐹(codom 𝑓 ) we can therefore leave out all those fac-
tors coming from identity morphisms.
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Exercise 3.2.iii
We can describe Sq(𝑓 , 𝑔) more explicitly as

Sq(𝑓 , 𝑔) = {(ℎ, 𝑘) | ℎ∶ 𝑎 → 𝑐, 𝑘 ∶ 𝑏 → 𝑑, 𝑔ℎ = 𝑘𝑓 } .
In other words, Sq(𝑓 , 𝑔) is the pullback of the following diagram:

𝖢(𝑎, 𝑐)

𝖢(𝑏, 𝑑) 𝖢(𝑎, 𝑑)

𝑔∗

𝑓 ∗

Exercise 3.2.iv
A natural transformation 𝛼 ∶ 𝐹 ⇒ 𝐺 is a family 𝛼 = (𝛼𝑗)𝑗∈𝖩 such that for every
morphism 𝑓 ∶ 𝑗 → 𝑘 in 𝐽 the following diagram commutes:

𝐹 𝑗 𝐹𝑘

𝐺𝑗 𝐺𝑘

𝐹𝑓

𝛼𝑗 𝛼𝑘
𝐺𝑓

In other words, we need the equality

𝛼𝑘 ⋅ 𝐹 𝑓 = 𝐺𝑓 ⋅ 𝛼𝑗
for every morphism 𝑓 ∶ 𝑗 → 𝑘 in 𝖢. We can therefore describe Hom(𝐹 , 𝐺) as
the equalizer

Hom(𝐹 , 𝐺) ∏
𝑗∈𝖩

𝖢(𝐹 𝑗, 𝐺𝑗) ∏
𝑓 ∶ 𝑗→𝑘

in 𝖩

𝖢(𝐹 𝑗, 𝐺𝑘)
𝜑
𝜓

where the two maps 𝜑 and 𝜓 are given by

𝜑(𝛼)𝑓 = 𝛼𝑘 ⋅ 𝐹 𝑓 , 𝜓 (𝛼)𝑓 = 𝐺𝑓 ⋅ 𝛼𝑗 ,
for every morphism 𝑓 ∶ 𝑗 → 𝑘 in 𝖢.
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Exercise 3.2.v

We already used this construction in the previous exercise.

Exercise 3.2.vi

The category ∫ 𝐹 looks as follows:

• The objects of ∫ 𝐹 are pairs (𝑗, 𝑥) consisting of an object 𝑗 of 𝖩 and an
element 𝑥 of 𝐹 𝑗.

• A morphism from (𝑗, 𝑥) to (𝑘, 𝑦) in ∫ 𝐹 is a morphism 𝑓 ∶ 𝑗 → 𝑘 in 𝖩
with 𝑦 = (𝐹𝑓 )(𝑥).

A section Σ to the canonical projection functorΠ∶ ∫ 𝐹 → 𝖩 therefore looks
as follows:

• To every object 𝑗 of 𝖩 we associate an object (𝑗, 𝑥𝑗) of ∫ 𝐹 , with 𝑥𝑗 an
element of the set 𝐹 𝑗.

• To every morphism 𝑓 ∶ 𝑗 → 𝑘 in 𝖩we associate 𝑓 regarded as a morphism
from (𝑗, 𝑥𝑗) to (𝑘, 𝑥𝑘). This means precisely that we have (𝐹𝑓 )(𝑥𝑗) = 𝑥𝑘 .

The functor conditions Σ(1𝑗) = 1Σ𝑗 and Σ(𝑔𝑓 ) = Σ𝑔⋅Σ𝑓 are then automatically
satisfied.

We hence see that a section of Π is the same as a choice of elements 𝑥𝑗 ∈ 𝐹 𝑗
for 𝑗 ∈ 𝖩 that is consistent in the sense that (𝐹𝑓 )(𝑥𝑗) = 𝑥𝑘 for every mor-
phism 𝑓 ∶ 𝑗 → 𝑘 in 𝖩. But these conditions mean precisely that the fam-
ily (𝑥𝑗)𝑗∈𝖩 defines an element of lim 𝐹 . We hence see that sections of Π corre-
spond one-to-one to elements of lim 𝐹 .

This observation allows us to define lim 𝐹 as the set of sections of Π. The
legs 𝜆∶ lim 𝐹 ⇒ 𝐹 can then be described as follows: if Σ is a section of Π,
and thus an element of lim 𝐹 , then Σ𝑗 = (𝑗, 𝜆𝑗(Σ)). In other words, 𝜆𝑗(Σ) is the
projection of Σ𝑗 onto its second coordinate.
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3.3 Preservation, reflection, and creation of
limits and colimits

Exercise 3.3.i
(i)

We have in 𝖢 the colimit cone 𝜅 ∶ 𝐾 ⇒ colim𝐾 under 𝐾 . Applying the
functor 𝐹 to the diagram 𝐾 and the cone 𝜅 ∶ 𝐾 → colim𝐾 under it yields the
cone

𝐹𝜅 ∶ 𝐹𝐾 ⟹ 𝐹 colim𝐾
under 𝐹𝐾 in 𝖣. The colimit cone 𝛾 ∶ 𝐹𝐾 ⇒ colim 𝐹𝐾 is the initial cone
under 𝐹𝐾 , whence there exists a unique morphism of cones 𝑓 as depicted:

𝐹𝐾

colim 𝐹𝐾 𝐹 colim𝐾

𝛾 𝐹𝜅

𝑓

(ii)

Suppose first that 𝐹 preserves colimits. The cone 𝐹𝜅 ∶ 𝐹𝐾 ⇒ 𝐹 colim𝐾 is
then a colimit cone under 𝐹𝐾 . The morphism 𝑓 is thus an isomorphism of
cones by the uniqueness of colimits.

Suppose now that the morphism 𝑓 is an isomorphism in 𝖣. It is then an
isomorphism of cones from 𝛾 ∶ 𝐹𝐾 ⇒ colim 𝐹𝐾 to 𝐹𝜅 ∶ 𝐹𝐾 ⇒ 𝐹 colim𝐾 .
As 𝛾 ∶ 𝐹𝐾 ⇒ colim 𝐹𝐾 is initial in the category of cones under 𝐹𝐾 , it follows
that the isomorphic cone 𝐹𝜅 ∶ 𝐹𝐾 ⇒ 𝐹 colim𝐾 is also initial. In other words,
it is again a colimit cone. This shows that 𝐹 preserves colimits.

Exercise 3.3.ii
We consider for simplicity only limits. Colimits can be dealt with in the same
way.

Let 𝐹 ∶ 𝖢 → 𝖣 be a full and faithful functor. Let 𝐾 ∶ 𝖩 → 𝖢 be a dia-
gram in 𝖢 and let 𝜆∶ ℓ ⇒ 𝐾 be a cone over 𝐾 . Suppose that the induced
cone 𝐹𝜆∶ 𝐹ℓ ⇒ 𝐹𝐾 is a limit cone in 𝖣. We need to show that 𝜆∶ ℓ ⇒ 𝐾 was
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a limit cone to begin with. In other words, we need to show that for every
cone 𝜅 ∶ 𝑐 ⇒ 𝐾 in 𝖢 there exists a unique morphism of cones from 𝜅 ∶ 𝑐 ⇒ 𝐾
to 𝜆∶ ℓ ⇒ 𝐾 .

We start with the existence. To this end we consider in 𝖣 the induced
cone 𝐹𝜅 ∶ 𝐹𝑐 ⇒ 𝐹𝐾 . There exists a unique morphism of cones ℎ as depicted
below because 𝐹𝜆∶ 𝐹ℓ ⇒ 𝐹𝐾 is a limit cone over 𝐹𝐾 :

𝐹𝑐 𝐹ℓ

𝐹𝐾

ℎ

𝐹𝜅 𝐹𝜆

There exists a unique morphism 𝑓 ∶ 𝑐 → ℓ in 𝖢with ℎ = 𝐹𝑓 because 𝐹 is both
full and faithful. We have therefore the following commutative diagram in 𝖣:

𝐹𝑐 𝐹ℓ

𝐹𝐾

𝐹𝑓

𝐹𝜅 𝐹𝜆

It follows from the faithfulness of 𝐹 that the original diagram

𝑐 ℓ

𝐾

𝑓

𝜅 𝜆

in 𝖢 commutes. This tells us that 𝑓 is a morphism of cones from 𝜅 ∶ 𝑐 ⇒ 𝐾
to 𝜆∶ ℓ ⇒ 𝐾 .

We now show the uniqueness. To this end let 𝑔 be any morphism of cones
from 𝜅 ∶ 𝑐 ⇒ 𝐾 to 𝜆∶ ℓ ⇒ 𝐾 in 𝖢. It follows that 𝐹𝑔 is a morphism of
cones from 𝐹𝜅 ∶ 𝐹𝑐 → 𝐹𝐾 to 𝐹𝜆∶ 𝐹ℓ → 𝐹𝐾 in 𝖣. Therefore, 𝐹𝑔 = ℎ by the
uniqueness of ℎ. This means that 𝐹𝑔 = 𝐹𝑓 , and thus 𝑔 = 𝑓 because 𝐹 is
faithful.
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